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Strasbourg, France.

1 May 2016

Online at https://mpra.ub.uni-muenchen.de/71711/
MPRA Paper No. 71711, posted 7 June 2016 11:57 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/71711/


How To Spend It?
Capital Accumulation in a Changing World

Pierre Gosselin∗ Aïleen Lotz† Marc Wambst‡

May 2016

Abstract

In a society characterized by a multitude of heterogeneous agents and a large number of possibly
immaterial (i.e. cultural, educational, etc...) goods, each one having a distinct social (relative price) and
personal value (individual preference), we study the impact of these relative values’evolution on capital
accumulation, depending on economic and social parameters, such as capital mobility, productivity, and
personal and social values discrepancies.

We consider an arbitrary number of agents, each endowed with a one-period production function and
a two-period intertemporal utility. Agents live, produce and consume over one period, but optimize over
two periods, so providing a stock of goods for the next generation. In period one, the inherited stock
may be partly disposed of to produce alternate goods, depending on the agent individual preferences and
on the present goods’social value, thus creating a dynamics in capital accumulation.

A phenomenon of threshold appears in the dynamics of the agent capital stock. Below this threshold,
the initial stock will quickly fade away; above, capital accumulation is possible. The threshold strongly
depends on both personal and social values volatilities. When social values vary strongly, the threshold
increases, and stocks depreciate faster than they are replaced. Shocks on the goods’social values may
drive stocks above or below the threshold, in turn inducing a reversal in dynamics.

For a precursor, i.e. an agent whose personal values will be next period social values, a strong mobility
in capital will decrease the threshold: there is a gain to innovate. When social values are an average of
several sectors’values, one sector will ultimately dominate. Its values will become social values, and its
stock will appreciate at the expense of other sectors.
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Introduction

Capital theory has been the subject of intense debates among economists since the early 19th century [31].
The latest of these debates, the Cambridge capital controversy, opposed so-called neo-Ricardian economists
- such as Joan Robinson and Piero Sraffa at the University of Cambridge in England - to neoclassical
economists such as Paul Samuelson and Robert Solow at the Massachusetts Institute of Technology, in
Cambridge, Massachusetts. While neoclassicals defended the orthodox treatment of interest as determined
by supply and demand, neo-Ricardians assumed it to be determined by the conjunction of technological
conditions of production and by the distribution of income[29], [9], [8]. The resolution of the debate and its
implications has not been agreed upon by economists.
The root of the debate lies in the aggregation problem: using microeconomic conceptions to understand

the whole society’s production could prove to be a fallacy of composition. Yet although general equilibrium
models with heterogeneous labor and capital have been developed by the neoclassical school, most versions
of neoclassical growth theory, and notably in the Solow growth model, assume a simple production function
for the entire economy. The subsequent theories of endogenous growth and real business cycles likewise used
aggregate production functions. The controversy was simply put aside [12], [13], [5]1 .
The technical criticism of marginal productivity theory may have been blurred by ideological considera-

tions. In a recent paper, Romer [28] considers Joan Robinson [26], [27] was engaged in academic politics when
she waged her campaign against capital and the aggregate production function. The mathematisation of
growth theories initiated by Solow [31] represented, by comparison, a simplification of the notion of capital,
allowing for a clear formalisation of the problems raised by capital accumulation and its mechanisms. This
advantage has largely compensated the flaws associated with this approach.
Without taking part to the debate, let us simply state that the problems and debate raised by Joan

Robinson’s criticism remain open. The complex nature of capital requires a richer formalism involving
multiple agents and factors with environment-dependent productivities. The description of a disaggregated
capital valorized by multiple factors would avoid the problem of price of capital, even if it must later be
aggregated again to recover macro concepts.
This paper is a first step towards such a formalism. Our approach considers an economy with a large

number of different agents and goods. Each good has a specific social value, and heterogeneous personal
values. We call "value" of a good a price that can be either objective (exchange value) or subjective (moral
value). Eventhough subjective, a value may nonetheless impact on the agent’s utility by weighing on his con-
sumption. These values can be personal (micro) or social (macro). Social or macro values are the environment
where individual values are set and evolve, and under certain conditions, micro values may become macro
values. The introduction of social and personal values allows to differentiate between the agent technological
capacity and its social valorization. It allows to study differentiated and combined production sectors and
the reciprocal impact of social environment and sector development.
This paper specifically studies personal and social values interactions and their impact on capital ac-

cumulation, consumption and production. We analyse how heterogeneity in personal values impacts social
values and capital accumulation. Is innovative activity rewarded, and in what conditions? What are the
conditions that favor capital accumulation for precursors? Can two sectors with distinct values coexist, and
how are social values impacted by their competition?
To answer these questions, we consider a society characterized by a multitude of heterogeneous agents

and a large number of possibly immaterial (i.e. cultural, educational, etc...) goods, each one having distinct
social (relative price) and personal value (individual preference). We study the impact of these relative
values’ evolution on capital accumulation, depending on economic and social parameters, such as capital
mobility, productivity, and personal and social values discrepancies.
There exist an arbitrary number of agents, endowed with a one-period production function and a two-

period intertemporal utility. Agents live, produce and consume over one period, but optimize over two
periods, so providing a stock of goods for the next generation. In period one, the inherited stock may be
partly disposed of to produce alternate goods, depending on the agent individual preferences and on the
present goods’social value, thus creating a dynamics in capital accumulation.
Each agent is characterized by two vectors of infinite dimensions. The first vector is a vector of goods

whose coordinate ith is the agent endowment in the good i. The second vector is a vector of so-called personal

1For more details on the controversies, see [32], [16], [24], [21], [17], [25], [4].
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values, whose ith coordinate represents the relative personal value of the ith good. Besides, there exist a
social value vector whose ith coordinate represents the relative value bestowed by society on the ith good,
its price.
There is an infinite number of goods, each being characterized by three factors: its social or macro value,

the agents’individual endowment in this good, and the good’s personal or micro value for the agent. Let us
precise that this vector χ contains all potential goods, whose values are set to 0 at time t. It is a grid of all
past and future goods. Likewise, V contains all personal values attributed to these possible goods.
Agents can produce all goods, but have a specific advantage to produce within their respective personal

value V . The quantity of all produced goods is a function of their respective personal and social values. Each
good’s individual value is associated with a marginal productivity, that is itself a function of the good’s social
value. Agents’productivity depends on the social value of their production, which also acts as an indicator
of their technological environment. The two vectors, χ and V, are suffi cient to characterize the production
of all goods. This feature allows to treat factors of production as heterogeneous goods with independent
or multiple valuations, without refering to any notion of profit or rate of return. Let us remark that this
feature of the model encapsulates the interactions between social and personal values. It is the equivalent of
neo-Ricardian determinants of capital, i.e. distribution of income and technological environment.
An important feature of the model is that the vector χt can be either endogeneous or exogeneous. When

χ is exogeneous, it is the environment that determines φ. Conversely, when χ is endogeneous, agents may
modify their environment. We will consider the implications of both possibilities in the following.
To do so, we consider four configurations of social and individual values, and their respective relevance

for capital accumulation. In the benchmark case, the society is homogenous, and individual values perfectly
match social values. Social values evolve exogenously through external stocks. A first departure from this
benchmark, case two, considers individual values differing from social values by a stochastic term. Personal
values are randomly distributed around social values. Although social values still evolve exogenously, and
agents do not influence this evolution, the society is now heterogeneous. Some agents may significantly depart
from the common social values, without however affecting future social values. The third case refines the
relation between social and personal values. Some individual values may now anticipate future social values
up to a random noise. Some agents may impact the evolution of future social values. The fourth and last
case considers a two-sector economy with distinct sector values. Future social values are a weighted mean of
present sector values, so that each sector will partly be precursor. It may impact future social values, and
the weight attributed to each sector will be proportional to the social value of its accumulated stock.
We find that, in all of the above cases, a phenomenon of threshold appears in the dynamics of the agent

capital stock. Below this threshold, the initial stock will quickly fade away; above, capital accumulation is
possible. The threshold strongly depends on both personal and social values volatilities. When social values
vary strongly, the threshold increases, and stocks depreciate faster than they are replaced. Shocks on the
goods’social values may drive stocks above or below the threshold, in turn inducing a reversal in dynamics.
More specifically, in the first case, a strong volatility in social values prevents stock accumulation. Ex-

cessive exogenous innovation may impair capital accumulation. On the other hand, unexpected shocks in
social values may drive capital stock value below, or above, the threshold and either deter or initiate capital
accumulation. A standard example of this case would be the sudden appreciation in the price of a natural
resource such as petrol.
The threshold decreases when productivity - the effi ciency in capital stock transformation - increases.

Productivity plays here the role of technology in growth models. Capital mobility, i.e. the proportion of
capital stocks that may be transformed in alternate goods each period, is also an important parameter.
Its increase has an ambiguous effect, depending on productivity: when productivity is high, the threshold
decreases. Thus high capital mobility favors capital accumulation in a high capital effi ciency environment.
In a low productivity environment, the threshold increases: production barely covers consumption needs.
Heterogeneity in social values increases the threshold for capital accumulation. When social values and

personal preferences are purely independent, the volatility of the latter impairs capital accumulation. Orig-
inality here is not productive. However, this result is modified when endogenity in social values’dynamics
is introduced in the model. Indeed, the precursors’ threshold decreases when the proportion of capital
transformed is high: high capital mobility favors precursors.
When heterogeneous sectors are considered, the competition between sectors for capital stock accumu-

lation impacts social values, leading to unstable dynamics. Capital accumulation discrepencies drive social
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values towards the most valued sector, appreciating its stock and in turn enhancing future stock accumu-
lation, while the other sector value will tend to loose value, depreciating its stock accordingly. The first
sector values and stock will ultimately dominate while the other sector stock will be depleted. A shock in
social values may, as in case one, reverse the situation and each sector’s role. A standard example would be
the impact of Corn Laws in the competition between industrial and agricultural sectors in XIXth century
England.
The rest of this paper is organized as follows. Section 2 presents the model. Section 3 presents the

agent’s optimization problem. Section 4 describes the four cases presented above and their results. Section
5 discusses the results and concludes.

1 The model

We consider a society with an inifinite number of heterogeneous agents and a large number of possibly
immaterial goods. Each agent endowment in each good is encoded in a vector φt, where the i-th coordinate
of φt, (φt)i, is the quantity of good i owned by the agent. Goods have distinct social values, or relative
prices, encoded by a price vector χt

Agents have individual preferences over the entire set of goods, so that personal and social values may
differ. These personal values are modeled by a vector of relative prices Vt.

It is important to note here that agents have a one-period lifespan and a one-period production function,
but a two-period intertemporal utility. They live, produce and consume over one period, but optimize over
two periods, so providing for a stock of goods for the next generation.
This feature gives its overlapping aspect to the model. Eventhough agents only live one period, their

behaviors will impact their heirs through the level of capital transmitted. The model is therefore one of
capital accumulation. This will appear clearly in the dynamics of φt.

1.1 Utility

An agent inherits in period t a stock of goods φt. He will sell part of this stock and use it as capital in his
production Yt. This production, along with the remaining stock, will either be consumed or passed on as
φt+1, the bequest left to his heirs. The agent constraint is then:

φt+1 = φt + Yt − Ct

We assume φt+1 ≥ 0 ("no-debt condition"). Each agent is described by a two-periods utility that is a sum
of two terms characterizing the agent’s tradeoff between consuming today and transmitting his wealth.We
call Ūt this intertemporal utility :

Ūt = U (Vt, φt, χt, Ct) + ρÛ
(
φt + Yt − Ct, Etχt+1

)
The first term U (Vt, φt, χt, Ct) is the agent’s utility to consume. We choose:

U (Vt, φt, χt, Ct) = (Vt)
t
Ct −

1

2
α
(

(Vt)
t
Ct

)2

− 1

2
β
(

(Vt − χt)
t
Ct

)2

− 1

2
γ (Ct − φt)

t
(Ct − φt)

The contribution (Vt)
t
Ct − 1

2α
(

(Vt)
t
Ct

)2

is the quadratic utility over N goods, each weighed by Vt. A

consumption colinear to Vt maximizes this part of the utility when ‖Ct‖ is constant.
This choice of utility function is in line with the Leontief paradox [18], stating that the country with the

world’s highest per worker-capital has a lower capital/labor ratio in exports than in imports. In that, we
follow the Linder hypothesis [20] and consider that demand plays a more important role than comparative
advantage as a determinant of trade, with the hypothesis that countries - and here agents - which share
similar demands will be more likely to trade. This modeling stems from the assumption that an environment,
to endure, needs to sustain the level of factor-endowment it has reached. It will therefore favor the very
environment it has created itself.
Some exogenous evolution may radically change the goods’relative values, and trigger a depreciation of

the agent’s goods. The agent whose capital value has been eroded will no longer be able to accumulate. To
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consume and produce within his new environment, he will eat up his own capital, that will tend to disappear.
The composition of its capital will evolve, but not quickly enough to avoid depletion.

The loss − 1
2β
(

(Vt − χt)
t
Ct

)2

is the new and most important term in this utility. It stems from dis-

crepencies between personal and social values, Vt and χt. Actually, the scalar product (Vt − χt)
t
Ct measures

the part of Ct proportional to Vt − χt, and thus the part of Ct transverse to χt. This term is the loss ex-
perienced by an agent when its consumption departs from χt. It reflects the model hypothesis of a link
between goods and the environment: the environment valorizes goods, so that goods’utility depends on the
environment.
We also assume the agent experiences a loss − 1

2γ (Ct − φt)
t
(Ct − φt) when his consumption differs from

his bequest. However this aspect is less important and will be neglected afterwards. Nonetheless it is an
impediment to investment since it favors stock consumption rather than stock transformation, and represents
an incentive to consume one’s bequest.
The second term in the intertemporal utility is the contribution of the bequest to the agent’s utility.

Here, it is ρÛ
(
φt+1, Etχt+1

)
, where ρ is the time discount factor and where we choose:

Û
(
φt+1, Etχt+1

)
= V tt φt+1 −

1

2
δ
(
V tt φt+1

)2 − 1

2
ε
((
Vt − Etχt+1

)t
φt+1

)2

= V tt (φt + Yt − Ct)−
1

2
δ
(
V tt (φt + Yt − Ct)

)2 − 1

2
ε
((
Vt − Etχt+1

)t
(φt + Yt − Ct)

)2

the agent’s utility at time t to leave a bequest φt+1. Note that this solely depends on the agent preferences
at time t.
The term Û

(
φt+1, Etχt+1

)
encapsulates the overlapping character of the model. Non-overlapping models

usually include infinitely-lived agents, each agent sharing the same objectives and values as his heirs do. On
the contrary, we consider agents whose personal values may differ, at least partly, from their descendants.
This does not necessarily prevent some continuity within personal values through time.
Let us recall that the main motivations for saving are saving for retirement, or "hump" saving, precau-

tionary savings or "unintended" bequests, due to uncertainty about the length of life, and planned bequests
(see [15]). In this paper, we strictly consider planned bequests. In so doing, we depart from Modigliani’s
life cycle hypothesis[22], whose theory would rather favor a combination of hump and precautionary saving.
However these two motivations are irrelevant in our context, since agents live only one period.
The two first terms in Û are similar to the two first terms in U (Vt, φt, χt, Ct). They are optimal when

φt+1 is colinear to Vt. The last term is an anticipated loss when Vt differs from χt+1. Evolving social values
induce a loss in the social value of the bequest. Agents are assumed to be myopic, so that Etχt+1 = χt. A
fraction η of the inherited stock is, at no cost, disposed of in period one to enable an alternate production
of goods. This dynamics in capital accumulation therefore depends on the evolution of social and individual
values.

1.2 Production

We consider an economy in which agents are producers and there are no wages. In this context, we study the
capital stock dynamics, transmission and transformation, under various combinations of social and personal
preferences for bequest, production and consumption. A fraction η of φt is transformed to produce a set of
goods Yt, a vector in the same space as φt.The final goods instantaneous production function is:

Yt = η (φt.χt) (ξK2 (ξ, η, φt.Vt)Vt + (1− ξ)K1 (ξ, η, φt.χt)χt)− η (φt)

where η (φt.χt) is the social value, i.e. the monetary equivalent of the quantity transformed ηφt. The quantity
ηφt is itself transfomed into equipments, wages, etc. The agent produces along two axes: Vt and χt, up to
a proportion ξ and (1− ξ), respectively. The productivities K1 (ξ, η, φt.χt) and K2 (ξ, η, φt.Vt) represent the
quantity of goods produced along Vt and χt respectively, per unit of φt.χt transformed, i.e. per unit of stock
social value.
The productivity K1 is a function of φt.χt: productivity depends on the technological environment

valorization of capital. Similarly K2 is a function of φt.Vt: productivity also depends on agents’personal
technology valorization of capital. The proportion ξ maximizes the function Yt.χt.
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The productivity K2 (ξ, η, φt.Vt) is increasing in ξ2 and its second derivative is assumed negative, to
reflect the cost of departing from social values. We assume that there is an optimum for ξ between 0 and
1. The term −η (φt) reflects the part of φt used up in the producing process: we therefore consider a net
production Yt. This production can be derived from the optimization problem of Yt.χt.
To simplify the computation, we will suppose η, the fraction of goods transformed, to be constant across

agents. Since η is fixed, we can dismiss the second order derivative of K with respect to η. We further
suppose decreasing returns to scale in investment, so that the derivatives satisfy the following conditions :
K1 > 0, K11 < 0, K3 > 0, K13 > 0, K4 > 0, K14 < 0.
Let us remark that the traditional characterization of technological change - a change in the set of feasible

production possibilities - is impossible here. Eventhough technical progress may be qualified as not neutral
in our model, since the environment does influence factors’relative productivity, this influence can be either
positive or negative, depending on the factor. This feature comes from the fact that our vector values are
totally arbitrary, and that we avoided the aggregation of factors of production.
Let us also remark that the evolution of Vt relative to χt is similar to the disruptive force of creative

destruction in the Schumpeterian growth theory[30], when Vt anticipates χt (case 3 of the model). In this
case, each agent may impact and disrupt society. The introduction of new, innovative goods broadens the set
of relative prices, thus further depreciating part of them. Therefore our agent can be seen, in some particular
cases, as a Schumpeterian entrepreneur.

2 The optimization problem

2.1 Utility optimization

Let us recall that the agent optimizes the intertemporal utility:

Opt(Ct,φt+1)
Ūt = Opt(Ct,φt+1)

U (Vt, φt, χt, Ct) + ρÛ
(
φt+1, Etχt+1

)
+ λ

(
φt + Yt − Ct − φt+1

)
Where we assume φt+1 ≥ 0. Although agents may leave a bequest, this bequest must necessarily be positive
(no debt condition). Recall also that:

Etχt+1 = χt

Yt = F
(
φt, χt − χt−1, Vt − Vt−1

)
φt+1 = φt + Yt − Ct

The optimization equations are straightforward. Replacing directly φt+1 by the expression above allows to
optimize on Ct only.

∂

∂Ct
U (Vt, φt, χt, Ct) +

∂

∂Ct
ρÛ
(
φt + Yt − Ct, Etχt+1

)
= 0

That is:

0 = (1− ρ)Vt − αVt
(

(Vt)
t
Ct

)
− β (Vt − χt)

(
(Vt − χt)

t
Ct

)
− γ (Ct − φt)

+δρVt
(
V tt (φt + Yt − Ct)

)
+ ερ

(
Vt − Etχt+1

) ((
Vt − Etχt+1

)t
(φt + Yt − Ct)

)
Using Etχt+1 = χt, this can be rewritten in a more compact form as:

Wt = (γ +N)Ct

Where the vector Wt and the matrix N are defined by :

Wt =
(
1− ρ+ δρV tt (φt + Yt)

)
Vt + γφt + ερ

(
(Vt − χt)

t
(φt + Yt)

)
(Vt − χt)

Nij = (α+ δρ) (Vt)i (Vt)j + β (Vt − χt)i (Vt − χt)j + ερ (Vt − χt)i (Vt − χt)j
2Symetricaly K1 (ξ, η, φt.χt) is decreasing in ξ.
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2.2 Production optimization

The function Yt is part of the optimization problem and as such, the parameter ξ must be identified. Recall
the production function:

Yt = η (φt.χt) (ξK2 (ξ, η, φt.Vt)Vt + (1− ξ)K1 (ξ, η, φt.χt)χt)− η (φt)

The agent will optimize Yt.χt on ξ while taking other variables as given. As explained above, we assume that
the agent is relatively more productive in the Vt, and as such ξ > 1

2 . However, due to the cost of differing
from χt, the return from departing from χt decreases with ξ, so that the optimal ξ is lower than 1. To model
the advantage to produce Vt we assume, for the sake of simplicity, that for the optimal ξ, productivities K2

and K1 are related by

K2 (ξ, η, φt.Vt) = τK1 (ξ, η, φt.χt)

with τ > 1. This ratio reflects the average gain in productivity of producing ξη (φt.χt) goods in the direction
of Vt. The vector Yt can then be rewritten:

Yt = η (φt.χt) (τξK1 (ξ, η, φt.Vt)Vt + (1− ξ)K1 (ξ, η, φt.χt)χt)− η (φt)

Depending on τ and the production function parameters, ξ can, as a second order approximation3 , be written
: ξ = 1+ϕz

2 , where z = sin2 (arg (Vt, χt)) (note that ξ = 1
2 when Vt = χt as needed). Moreover, remark that

τ = 1 when Vt = χt. The parameters τ and ϕ depend on z, φt, χt and Vt. However they also depend on some
unknownK1 parameters, and can thus be seen (by a change in variables) as independent variables. Moreover,
using the envelope theorem, their dependence on z, φt, χt and Vt will be discarded in first approximation.
Ultimately we will approximate the productivity function K1 (ξ, η, φt.χt) at the optimal ξ by a first order
linear expansion:

K1 (ξ, η, φt.χt) = K1 + K̂1φt.χt

so that:
K1 (ξ, η, φt.Vt) = K1 + K̂1φt.Vt

where K1 and K̂1 are constant. In the absence of a specific form for the productivity function, we can
assume a valid first order expansion for a function depending weakly on φt.χt, or φt.Vt. This implies that
this approximation is valid for K̂1 << K1.

3 Results

We study the impact of relative prices on intertemporal capital accumulation, depending on internal economic
and social parameters, i.e. capital mobility, productivity, and personal and social values discrepancies. This
amounts to studying the dynamic for the variable Φt.χt, i.e. the capital stock social value.
We solve the model for several cases, in which we consider capital accumulation under various configura-

tions of social and individual values. Four cases are considered.
The benchmark case is an homogenous society where individual and social values match perfectly. Social

values evolve exogenously through external shocks and follow an AR (1) stochastic process. A first departure
from this benchmark, case two, considers individual values differing from social values by a stochastic term.
In this case, personal values are randomly distributed around social values. Social values evolve exogenously,
and agents do not influence this evolution, but the society being heterogeneous, some agents may significantly
depart from the common social values. Case three refines the relation between social and personal values.
Some individual values may now anticipate future social values up to a random noise. These agents may be
seen as precursors by impacting the evolution of future social values. The fourth and last case considers a
two-sector economy, each with distinct sector values. The future social values will be a weighted mean of
present sector values. Each sector will then partly be precursor, and the weight attributed to each sector
will be proportional to the social value of its accumulated stock.

3See appendix.
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3.1 Benchmark case : identical personal and social values

In the benchmark case, there are no discrepencies between the society and the agents that compose it.
Individual and social values are strictly identical, and Vt = χt. The society is entirely homogenous, and
the capital accumulation dynamics is driven by the evolution of the variable χt

4 , that follows the AR (1)
stochastic process:

χt+1 =
√

1− σ2χt + εt+1

where εt+1 is a white noise of variance σ2 < 1, and
√

1− σ2 is a factor normalizing vector χt+1
5 . When σ

is large (close to one), χt+1 can depart widely from χt and social values may exhibit strong variations.
Under these assumptions, we show6 that the dynamics for Φt.χt is:

Φt+1.χt+1 =

((
ηK1 +

α+ δρη (1−K1)

γ + α+ δρ

)
Φt.χt −

1− ρ
(γ + α+ δρ)

+ η
γ + α

γ + α+ δρ
K̂1 (Φt.χt)

2

)
χt.χt+1−ηΦt.χt+1

(1)
As already mentioned, the social value χt is exogenous and follows a stochastic process

χt+1 =
√

1− σ2χt + εt+1 (2)

where εt+1 is a random noise7 of variance σ2. It follows from our assumption on the dynamics of χt that
Φt.χt is itself a stochastic process. Since at time t, there is no uncertainty on Φt and χt, then on average〈

(Φt.χt)
2
〉

= 〈Φt.χt〉
2, and equation 1 becomes:〈

Φt+1.χt+1

〉
√

1− σ2
=

(α+ η (α+ γ) (K1 − 1))

α+ γ + δρ
〈Φt.χt〉 −

1− ρ
(γ + α+ δρ)

+ η
γ + α

γ + α+ δρ
K̂1 〈Φt.χt〉

2

Such an equation can be solved with a continuous time approximation:

Φ (t) .χ (t) =
Φ+ − Φ− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆t)

1− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆t)

with:

∆ =

√
(a− 1)

2
+ 4bc

Φ± =
− (a− 1)±∆

2c
Φ0.χ0 = Φ (0) .χ (0)

and:

a =

(
(α+ η (α+ γ) (K1 − 1))

α+ γ + δρ

)√
1− σ2

b =
1− ρ

γ + α+ δρ

√
1− σ2

c = η
γ + α

γ + α+ δρ

√
1− σ2K̂1

The dynamics for Φ (t) .χ (t) presents a threshold pattern. For Φ0.χ0 below the threshold Φ+, Φ (t) .χ (t) will
tend to zero. For Φ0.χ0 above the threshold Φ+, Φ (t) .χ (t) will tend to +∞. If the stock initial social value
is low, the stock decreases. When its initial value is suffi ciently large, an explosive accumulation occurs. The
threshold Φ+ is explicitely given by:

Φ+ =
− (a− 1) + ∆

2c
4This assumption of χt exogenous will later be relaxed.
5See appendix for details.
6See appendix.
7See appendix for details.
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This threshold varies along with the parameters K̂1, σ2 and η. Variations with respect to K̂1 and σ2 are
unambiguous and satisfy ∂Φ+

∂σ2 > 0 and ∂Φ+

∂K̂1
< 0.

The variance σ2 measures the volatility of χt, as seen in equation 2. Since
∂Φ+

∂σ2 is positive, the threshold
increases with volatility, hindering capital accumulation. Stocks may depreciate faster than the time it takes
to rebuild them. A larger initial stock will be necessary to accumulate capital.
The second inequality ∂Φ+

∂K̂1
< 0 shows that when productivity increases, the threshold diminishes and

capital may accumulate even whith a low initial capital stock.
Variations in the threshold with respect to η are more ambiguous and depend on the parameter values.

When 2η > − b√
1−σ2 +

√
b2

1−σ2 + 2 (1− ρ)K1, the term ∂Φ+

∂η is positive. It is negative otherwise.
When the agent productivity K1 is small, and when η, the fraction of capital devoted to his own pro-

duction, is large, his production will be low, and lower than his consumption. There will be an incentive to
consume the remaining stock of inherited capital, and the bequest will be depleted. As a consequence, the
threshold Φ+ will increase: a large initial capital Φ0 will be necessary to accumulate further capital.

On the contrary, if K1 is large enough, an increase in η will lower the threshold Φ+. The more productive
the agent, the larger the gain to transform his stock of capital.
We can now study the impact of a shock on χt, seen as a shift on φt.χt, followed by a resuming dynamics

afterward. This shock can lead to a radical change in the dynamics, depending on the stock value φt.χt,
moving above or below the threshold.
For example, a depreciating capital stock can suddenly appreciate, inducing a trend in capital accu-

mulation. On the contrary, a sudden depreciation in an otherwise increasing capital stock may lead to a
reversal in capital accumulation. This may illustrate the impact of technological changes rendering some
older equipements obsolete, or inversely, the sudden wealth induced by the discovery - or revalorisation - of
some natural resources.
Last but not least, the solution of our model shows the effects of specialization within a society. Supposing

that χt is oriented along one single good, the slightest modification εt+1 in whichever alternate direction
will be transverse to χt, and will induce a noticable reduction in the value of accumulated stock. The fall
of this value below the minimal accumulation threshold could lead to a reversal in dynamics and a shortage
in stocks. Our results therefore support a strong heterogeneity among sectors within a single society. The
milder the specialization in production, the greater the resilience towards headwinds or shocks.

3.2 Case Two : Heterogeneity in personal values

Consider now that personal values are related to social values by the following relation:

Vt =
√

1− σ̃2χt + ε̃t

where ε̃t is a white noise of variance σ̃2. The factor
√

1− σ̃2 normalizes the vector Vt. The variance σ̃2

therefore represents the dispersion of individual values within a society. Agents’individual values are spread
around

√
1− σ̃2χt following a gaussian variable.

The social value χt is the normalized average of individual values, i.e. χt =
∑ Vt√

1−σ̃2
where the sum is

peformed over agents. When σ̃2 = 0, the society is entirely homogenous, as studied in our benchmark case.
The dynamics followed by χt is identical to case one:

χt+1 =
√

1− σ2χt + εt+1 (3)

The dynamic equation for 〈φt.χt〉8 , where the bracket sign signifies the average over all agents of φt.χt, is :〈
φt+1.χt+1

〉
√

1− σ2
=

(
(Aτ (1 + ϕz) +B (1− ϕz)) ηK1

2
+ (1− η)

α+ 2zδρ

α+ δρ

)
〈φt.χt〉

+
1

2
(A (1− 2z) τ (1 + ϕz) +B (1− ϕz)) ηK̂1 〈φt.χt〉

2 − (1− ρ)

(α+ δρ)

8Shown in the appendix.
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where:

A =

(
(1− 2z)− δρ

α+ δρ

)
B =

(
1− δρ (1− 2z)

α+ δρ

)
The solution of the dynamic equation is similar to the benchmark case:

Φ (t) .χ (t) =
Φ+ − Φ− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆′t)

1− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆′t)

and presents a threshold:

Φ+ =
− (d− 1) + ∆′

2f

where:

∆′ =

√
(d− 1)

2
+ 4ef

Φ− =
− (d− 1)−∆′

2f

and

d =

(
(Aτ (1 + ϕz) +B (1− ϕz)) ηK1

2
+ (1− η)

α+ 2zδρ

α+ δρ

)√
1− σ2

e =
(1− ρ)

(α+ δρ)

√
1− σ2

f =
1

2
(A (1− 2z) τ (1 + ϕz) +B (1− ϕz)) ηK̂1

√
1− σ2

The parameter τ measures the agent’s relative gain in productivity in Vt. The parameter z measures the
angle between personal and social values vectors Vt and χt. When z = 0, Vt = χt and when z = 1, Vt and
χt are orthogonal. The parameter ϕ measures the extra weight attributed by each agent to the production
of Vt compared to its production of χt.
When τ is close to 1, the agent is only marginaly more productive in Vt. An increase in z, ϕ or η increases

the threshold Φ+, since producing Vt does not compensate the cost of differing from χt.
When τ increases and is suffi ciently large, Φ+ diminishes with z, ϕ or η. Actually, for an agent highly

productive in Vt, producing Vt largely compensates differing from χt. Moreover, the farther from χt agent’s
values are, the higher the incentive to produce Vt will be, and the higher the agent’s production, so that Φ+

diminishes.
When individual values do not impact future social values, differing from χt has an ambiguous effect.

When relative productivity in Vt is small, producing χt favors capital accumulation. When this relative
productivity is large, producing Vt favors capital accumulation. The more Vt differs from χt, the greater the
capital accumulation.

3.3 Case Three: the dynamics of a precursor agent

In this case, the individual values of one agent at time t may influence social values at time t+ 1. Whereas
the two previous cases considered societies with exogeneously evolving social values, this case endogeneizes
χt by modeling the social impact of precursors. Alternatively, it could depict a society where aggregated
indivual values Vt will become social values χt+1, thus modeling the internal evolution of social values. This
situation can be described by the following dynamics on Vt and χt:

Vt =
√

1− σ̃2χt + ε̃t

χt+1 =
√

1− σ2Vt + εt

χt+1 =
√

(1− σ2)
(
1− σ̃2

)
χt + εt +

√
1− σ2ε̃t
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Here εt and ε̃t are white noises of variance σ2 and σ̃2, respectively.
At time t, Vt differs from χt by a white noise ε̃t and χt+1 is determined by Vt up to some random noise

modeling external shocks. The dynamics for 〈φt.χt〉 is computed in the appendix. Assuming the following
normalizations, α = 1, δ = 1, K1 = K2 = 1, K̂1 = K̂2, and assuming also τ = 1 to focus on the precursor
effect, we have:〈

φt+1.χt+1

〉
√

1− σ2
= −1− ρ

1 + ρ
+

(zη (1 + zϕ) + 1− 2z)

1 + ρ
〈φt.χt〉+

(1− 2z) ηK̂1

ρ+ 1
〈φt.χt〉

2

that presents the same threshold pattern as in case two, with:

Φ+ =
−
(

(zη (1 + zϕ) + 1− 2z)− 1+ρ√
1−σ2

)
+

√(
(zη (1 + zϕ) + 1− 2z)− 1+ρ√

1−σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1

2 (1− 2z) ηK̂1

The variation of the threshold depends on the parameters and is given by:

∂Φ+

∂σ2
> 0,

∂Φ+

∂K̂1

< 0,
∂Φ+

∂ (1 + zϕ)
< 0,

∂Φ+

∂η
< 0,

∂Φ+

∂z
> 0

and

∂Φ+

∂ρ
< 0 if ηK̂1 >

2− ((zη (1 + zϕ) + 1− 2z))
√

1− σ2

1− σ2

∂Φ+

∂ρ
> 0 otherwise.

The parameter σ2 is the fluctuation of the exogenous part of χt. Here again, we find that the threshold is
increased by this volatility. A changing environment tends to erode capital value and impair its accumulation,
in turn increasing the accumulation threshold.
Greater productivity favors capital accumulation, and depresses the accumulation threshold. Thus ∂Φ+

∂K̂1
<

0.
Recall that 1 + zϕ represents the relative supplement of production in Vt. Here, contrarily to case two,

the result is unambiguous: ∂Φ+

∂(1+zϕ) < 0. Departing from the mainstream χt is overall positive, and favors
accumulation. Since tomorrow’s values will match individual values, the agent and his heirs will benefit
from this decision. A capital accumulated today and positively valued tomorrow actually amounts to an
investment. Along the same line, since the capital allocated to Vt will be positively valued tomorrow, the
higher the proportion of capital allocated to production, the higher the capital accumulation, so that ∂Φ+

∂η < 0
.
Time preference has an ambiguous effect on the variation of the threshold depending on the agent’s

productivity ηK̂1. When it is large enough, then
∂Φ+

∂ρ < 0. The agent is productive enough to leave a
bequest, that in turn favors accumulation.
When ∂Φ+

∂z > 0, there is no specific gain to produce Vt different from χt, contrarily to case 2. Since the
agent foresees χt, it would gain in producing the future environment. However it would loose by producing it
beforehand, without benefiting from the actual environment. So that when z increases, so does the threshold.

3.4 Case Four: A Two-Sector Economy

This case models a society in which χ is endogeneous. The society is composed of two sectors of equal initial
size and wealth. To simplify, we discard the two sectors common values to focus on their differences. To do
so, we consider that the vectors of sectors values, V1 et V2 respectively, are strictly orthogonal, so that the
goods they produce are radically different. At each moment in time, χ is a weighed value of V1 et V2, and
weights are proportional to each sector goods’value. Wee show in the appendix that the dynamics of the
stock of each sector is given by :

φt+1 =
(
η (φt.χt)

(
1 + K̂1 (φt.Vt)

))
Vt−

1− ρ+ δρ
(

(1− η)φt.Vt + η (φt.χt)
(

1 + K̂1 (φt.Vt)
))

(1 + ρ) (1− z)

 χt + Vt
2

+(1− η)φt
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We call yt = (φt.χt) the social value of φt.

φt+1 =
(
ηyt

(
1 + K̂1 (φt.Vt)

))
Vt−

1− ρ+ δρ
(

(1− η)φt.Vt + ηyt

(
1 + K̂1 (φt.Vt)

))
(1 + ρ) (1− z)

 χt + Vt
2

+(1− η)φt

Let us now consider the case of a two-sector economy, with stocks φ(1)
t and φ

(2)
t and group values V (1)

t

and V (2)
t , respectively. We also assume that these values are time independent, such that V (1)

t = V
(1)
0 and

V
(2)
t = V

(2)
0 . Besides V (1)

t and V (2)
t are transversal, V (1)

t .V
(2)
t = V

(1)
0 .V

(2)
0 = 0.

We further assume that social values are endogenous and given by a weighted average of previous period
personal values. The weights are the relative ratio of each groups’stock previous periods’social value.

χt+1 =

(
φ

(1)
t .χt

)
V

(1)
t +

(
φ

(2)
t .χt

)
V

(2)
t√(

φ
(1)
t .χt

)2

+
(
φ

(2)
t .χt

)2

+ 2
(
φ

(1)
t .χt

)(
φ

(2)
t .χt

)
V

(1)
t .V

(2)
t

(4)

=

(
φ

(1)
t .χt

)
V

(1)
0 +

(
φ

(2)
t .χt

)
V

(2)
0√(

φ
(1)
t .χt

)2

+
(
φ

(2)
t .χt

)2

=
y

(1)
t V

(1)
0 + y

(2)
t V

(2)
0√(

y
(1)
t

)2

+
(
y

(2)
t

)2

Let us also define z(i), i = 1 or 2

1− 2z
(i)
t = χt.V

(i)
0

z(i) measures the angle between χt and V
(i)
0 . We define also:

y
(i)
t = φ

(i)
t .χt

x
(i,i)
t = φ

(i)
t .V

(i)
0

Respectively the social value of group i’s stock, and the group value attributed by group i to it’s own stock
φ

(i)
t .
We also define the following "crossed" values:

x
(i,3−i)
t = φ

(i)
t .V

(3−i)
0

, i.e. the value attributed by a group to the stock of the other group.
We show in the appendix, that the values x(i,i)

t and x(i,3−i)
t satisfy the following dynamics:

x
(i,j)
t+1 = ηy

(i)
t

(
1 + K̂1x

(i,i)
t

)
wi,j−

1− ρ+ δρ
(

(1− η)x
(i,i)
t + ηy

(i)
t

(
1 + K̂1x

(i,i)
t

))
(1 + ρ)

(
1− z(i)

t

)
 z

(j)
t + wi,j

2
+(1− η)x

(i,j)
t

with wi,j = δi,j .
The dynamic for sector 1 is explicitly given as:

ηx
(1,1)
t+1 = ηy(1)

(
1 + K̂1x

(1,1)
)
−
(

1− ρ+ ρ
(

(1− η)x(1,1) + ηy(1)
(

1 + K̂1x
(1,1)

))) z(1) + 1

2 (1 + ρ)
(
1− z(1)

)
ηx

(1,2)
t+1 = −

(
1− ρ+ ρ

(
(1− η)x(1,1) + ηy(1)

(
1 + K̂1x

(1,1)
))) z(1)

2 (1 + ρ)
(
1− z(1)

)
12



and the same for sector 2.
The dynamics for y(i)

t is then deduced from the equation for χt+1 above.

y
(i)
t+1 =

y
(1)
t x

(1,1)
t+1 + y

(2)
t x

(1,1)
t+1√(

y
(1)
t

)2

+
(
y

(2)
t

)2

+ 2
(
y

(1)
t

)(
y

(2)
t

)
w

=
(

1− 2z
(i)
t

)
x

(1,1)
t+1 +

(
1− 2z

(3−i)
t+1

)
x

(1,1)
t+1

The appendix shows that no equilibrium point exist. However, it also shows there is an "equilibrium"

dynamics y(1)
t = y

(2)
t ,

(
1− 2z

(1)
t

)
=
(

1− 2z
(2)
t

)
= 1√

2
. That is, both group values participate equaly to the

social value χt =
V
(1)
0 +V

(2)
0√

2
. For y(1)

t and y(2)
t above a certain threshold, y(1)

t and y(2)
t goes to +∞ and that

x
(1,2)
t and x(2,1)

t tend to 0. In other word, above this threshold, both group accumulate, but ultimately in
the direction of their own sector values only. The appendix shows that this equilibrium dynamic is unstable.

A small desequilibrium in the composition of χt =
V
(1)
0 +V

(2)
0√

2
, i.e. the overvaluation of one group value, leads

to depart from the symetric situation presented above. One group will accumulate with a lower threshold,
and the other group will experience a increase in his threshold, i.e. an increased diffi culty to accumulate.
Moreover this last group will specialize slower than the first group. Ultimately the accumulation of the
second group will progressively be socialy undervalued and will tend to 0.

4 Discussion

What are the main contributions of this model? Let us first remark that the vector χ is similar to a vector
of market prices for all - material and immaterial, potential or real, past, present, and future - goods. This
vector therefore represents the global supply and demand within a society at a point in time. This feature
makes it a technological indicator for the society it describes. In this model, the vector of prices reflects
the period in which the society is studied, as well as its technicity level. An agricultural society will present
a vector χ whose non-null coordinates are affected to agricultural goods. Inversely, a highly technological
society has the bulk of its non-null coordinates concentrated in technologically-intensive goods. In other
words, these coordinates represent the solvent demand of the society they describe.
One should not confuse solvent demand and the aggregate sum of personal values attributed to each

good. Note also that potential goods - goods that are not available yet - may have a non-null personal value.
In a slave society, slaves may find an interest in mecanization - and yet have no social value - the slave
society may find no interest in it. In other words, we state that aggregate personal values are not necessarily
reflected by the vector of market prices. The latter includes and depends on other social or external factors,
be it historical or environmental.
If vector χ can be reduced to a vector of market price, the vector V , on the contrary, represents the real

interest granted to a good by the agent, and is an indicator of the productivity, or technological capacity of
the agent with respect to that good. The point of our formalisation is to have many types of valorization
coexisting within a society with multiple agents.
It is straightforward to see that in our production function productivity in good i is a combination of V

and χ. In other words, the agent’s productivity, i.e. his personal technology, may, or may not, be valorized
by his environment. The agent permanently faces a trade-off, in which he must confront the valorization
granted by his environment to a certain good (the neoclassical "interest of capital", dY/dχ), to his own
personal interest (his own "productivity", dY/dV ). This represents a cost for the agent that depends on the
discrepencies between V and χ. To sum up this argument in one vivid picture, there would be no possibility
to use a computer in the absence of electrical circuit or plug.
Inversely, the society as a whole may specialize only inasmuch it is totally homogeneous, or if there exist

a massive constraint to set aside V in favor of χ. This is usually the case in economies of war, when national
interests superseede all particular interests.
In neoclassical models, specialization is justified by the notion of comparative advantage. The Heckscher—

Ohlin theorem[23], for example, considers production and consumption as two totally dissociated behaviors.
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There is a gain to specialize in one’s comparative advantage, since the decrease in prices brought about by
specialization favors the consumption of differenciated goods. Agents are indifferent to the activity they
practice : their environment is not affected by it, and their consumption is strictly identical and equally
varied for all agents. The comparative advantage argument to justify specialization rests on opportunity
costs. These costs determine in which sector an economy should specialize, but they do not allow to study
the impact of specialization on society. In such a context, specialization utlimately benefits all agents, but
only inasmuch there are no technological changes, and production and consumption do not depend on a close
environment.
On the contrary, the present paper advocates that consumption and production are environment-dependent,

and therefore is dependent on technological change. In our model, agents preferences in consumption are
also their preferences in specialization, i.e their comparative advantage with respect to the vector of social
values χ. Since χ acts as an environment there is a cost to consume and produce far from χ. This flows from
the hypothesis that agents are consumers-producers. The loss in profit associated with the distance from χ
is the agent opportunity cost that arises from technological differences between the society and the agent.
In the present model, labor-augmenting technology or “knowledge” is replaced by the environment χ

and by the productivity associated to V . However, we do not consider the impact technological evolution
may have in terms of growth. Contrarily to the Solow growth model, we do not consider the technological
innovation impact in terms of global productivity, or the quantitative growth in technology: heterogeneity
of goods excludes these aggregated quantities. In the same vein, we do not measure an aggregated growth
rate. Rather, we study how the technological environnement evolution, be it endogeneous or exogeneous,
modifies or allows capital accumulation and/or wealth distribution. What this models allows, is a better
understanding of social inter-relationships.
For the same reasons, this paper must be distinguished from the investment specific technological change

(hereafter ISTC) literature. Let us recall that ISTC may be defined as technological change embodied in the
form of new equipment, for example advances in computer technology, robotization of assembly lines, etc[1].
We agree with the ISTC literature in that factors are differenciated. Indeed, this type of technological

innovation is different from the usual changes in total factor productivity in which capital of different gener-
ations is thought of as being the same type of good, or having the same cost as previous vintages of capital
(i.e. as measured in units of the consumption good). This view rejoins Robinson’s view on capital. Besides,
much work on the topic have shown the importance of ISTC in growth phenomena (see [11] , [10],Iglesias
(2002)[14] and Licandro et al. (2002)[19], for the role of ISTC as an important source of long-term growth,
[7], for the role of technological improvement in equipment and software in the productivity resurgence of
the 1990s). It has been advocated that not only the investment, but also its allocation, play an important
role in harvesting the benefits of information and communication technologies embodied in capital goods
(see Collechia and Schreyer (2002) [6], Bose (1971) [3], Weitzman (1971) [33], Araujo and Teixeira (2002) [2]
and Araujo (2004) [1]).
Our results underscore the importance of heterogeneity of factors of production and the value bestowed

to them by technological environment as a source of capital accumulation. These results are therefore close
to those of economic literature in this field. However they differ in that we do not consider growth as a global
phenomenon, but we rather focus on sectorial and inter-sectorial development.
Our take-off threshold approach may also be viewed in relation to development economics and economic

history. Our results concern the impact of parameters such as capital mobility, environment volatility and
agents’relative productivity on sectors’development. To put it differently, our work focuses on the conditions
allowing new technologies or environment - a change in V and in χ - to appear, impact other sectors, and
disseminate to the entire society. Case one can accounts for the impact of exogenous technological or historical
modifications on social capital accumulation. A resource curse would, in such a context, be modeled as a shock
on capital stock value impacting on an economy take-off . Case three deals with the take-off of an innovative
sector confronting its "established" technological environment. Case four studies the eviction effect of two
competing sectors unstable dynamics. Finally, these two last cases combined describe internal mechanisms
in industrial take-offs. The competition between the agriculture and industrial sectors in England at the
turn of the XIXth century, for example, would fit in this framework. It took the implementation of Corn
Laws to reverse a momentum that seemed, at first, favorable to the agricultural sector.

14



5 Conclusion

We have studied the interactions between social and individual values, their impact on capital accumulation,
consumption and production. In a society characterized by a multitude of heterogeneous agents and a
large number of possibly immaterial goods, each one having distinct social (relative price) and personal
value (individual preference), we have studied the impact of these relative values’ evolution on capital
accumulation, depending on internal economic and social parameters, i.e. capital mobility, productivity,
personal and social values discrepancies.
We have found that large variations in social values generally hinder accumulation: in a society of

relatively homogeneous values, stocks tend to quickly depreciate, eventhough punctual strong appreciation
are possible. This would tend to show that too much specialization may not be beneficial to a society. The
same thing holds true for the individual.
In the same line, we have shown that highly differentiated individual and social values favor capital

accumulation when this diversity reflects future changes in social values. However, investment capacity must
be large enough to compensate for the cost of departing from actual values.
At the same time, heterogeneity can become a factor of inequality. When social values are weighed

means of group values, competition leads to an unstable dynamics: there is a multiplier effect between value
and accumulation. One group will increasingly accumulate and impose its values, to the detriment of other
sectors’capital and values.
This leads to a problem of redistribution: if one sector’s capital is not valorised, it will not have the

means to diversify.
Future research includes the study of this framework in a growth model with disaggregated goods. Some

production parameters such as capital mobility should be endogeneized, since the choice of producing depends
on the environment. Such a model would account for the global wealth effects of sectors’dynamics and its
implications for redistribution policies.
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Appendix

Write the optimization problem :(
1− ρ+ δρV tt (φt + Yt)

)
Vt + γφt + ερ

(
(Vt − χt)

t
(φt + Yt)

)
(Vt − χt)

= (α+ δρ)Vt

(
(Vt)

t
Ct

)
+ β (Vt − χt)

(
(Vt − χt)

t
Ct

)
+ γCt + ερ (Vt − χt)

(
(Vt − χt)

t
Ct

)
In a matricial form:

Wt = (γ +N)Ct (5)

where we have defined:

Wt =
(
1− ρ+ δρV tt (φt + Yt)

)
Vt + γφt + ερ

(
(Vt − χt)

t
(φt + Yt)

)
(Vt − χt)

Nij = (α+ δρ) (Vt)i (Vt)j + β (Vt − χt)i (Vt − χt)j + ερ (Vt − χt)i (Vt − χt)j
Finding Ct and then Yt amounts to invert the matrix (γ +N). To do so, decompose N in several terms.
First, we set:

Xt =

√
αVt√
γ

Yt =

√
β + ε (Vt − χt)√

γ

and introduce the normalization (Vt)
t
(Vt) = (χt)

t
(χt) =

(
Etχt+1

)t (
Etχt+1

)
= 1

(χt) =
(
Etχt+1

)
sin y = sinx, sin z = 0

√
γ = δ.

Then write N as the sum:

N =
∑
i

M (i)

where:

M (i) = X(i)
(
X(i)

)t
P (il) = X(i)

(
X(l)

)t
α(i) =

(
X(i)

)t
X(i)

γ(il) =
(
X(i)

)t
X(l)

To expand the inverse of (γ +N) in powers of N , we need to compute
(∑

iM
(i)
)k
. It is obtained by using

the following relations: (∑
i

M (i)

)k
=
∑
i,l

c
(il)
k P (il)

with:
c
(il)
k+1 =

∑
m

c
(im)
k γ(ml) (6)

Gathering the coeffi cients c(im)
k and γ(ml) in a matricial form:

Ck+1 =
(
c
(im)
k

)
, G =

(
γ(ml)

)
Ck = C1G

k−1
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so that the previous relation 6 rewrites:
Ck+1 = CkG

One can check that:

C1 = (δil)

Ck = Gk−1

which allows to obtain
(∑

iM
(i)
)k
: (∑

i

M (i)

)k
= Tr

(
Gk−1P t

)
and utlimately:(

1 +
∑
i

M (i)

)−1

= 1 +

∞∑
k=1

(
−
∑
i

M (i)

)k
= 1 +

∞∑
k=1

Tr
(

(−1)
k

(G)
k−1

P t
)

= 1− Tr
(

(1 +G)
−1
P t
)

(γ +N)
−1

= γ−1

(
1 +

N

γ

)−1

= γ−1
(

1− Tr
(

(1 +G)
−1
P t
))

(7)

(γ +N)
−1 can thus be found straightforwardly by noticing that:

1 +G =

(
1 +XtX XtY
XtY 1 + Y tY

)
P =

(
XXt XY t

Y Xt Y Y t

)
P t =

(
XXt Y Xt

XY t Y Y t

)
and by using the identity:

1

(Y tY ) (XtX)− (XtY )
2Tr

(
Y tY −XtY
−XtY XtX

)(
XXt Y Xt

XY t Y Y t

)
= 1 as operator

Actually, this last relation yields:

1

(1 + Y tY ) (1 +XtX)− (XtY )
2Tr

(
1 + Y tY −XtY
−XtY 1 +XtX

)(
XXt Y Xt

XY t Y Y t

)
=

(Y tY ) (XtX)− (XtY )
2

+XXt + Y Y t

(1 + Y tY ) (1 +XtX)− (XtY )
2

and one is thus led to:

γ−1
(

1− Tr
(

(1 +G)
−1
P t
))

= γ−1 1 + Y tY +XtX −XXt − Y Y t

(1 + Y tY ) (1 +XtX)− (XtY )
2

Ultimately, rescale the variables

X = Vt

Y = (Vt − χt)

so that the final result is:

γ−1
(

1− Tr
(

(1 +G)
−1
P t
))

=
γ + (β + ε)Y tY + (α+ δρ)− (α+ δρ)XXt − (β + ε)Y Y t

(γ + (β + ε)Y tY ) (γ + (α+ δρ))− (α+ δρ) (β + ε) (XtY )
2

= M
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If we let
z = sin2 x

where
x =

1

2
arg(Vt, χt)

the scalar products Y tY , XtY and XXt can be computed and give the following alternate expression for
M :

M =
γ + 4 (β + ε) z + (α+ δρ)− (α+ δρ)XXt − (β + ε)Y Y t

(γ + 4 (β + ε) z) (γ + (α+ δρ))− 4 (α+ δρ) (β + ε) (z)
2

We are interested in the dynamics for φt and for φt.χt the social value given to a certain stock of capital
goods. Recall the form of the production function,

Yt = (η (φt.χt))
1−a

(
K1 (ξ, (φt.Vt)) ξVt +K2 (1− ξ, (φt.χt)) (1− ξ)χt√

1− 4ξ (1− ξ) z2

)
− η (φt)

∼ η (φt.χt) (K1ξVt +K2 (1− ξ)χt)− η (φt)

where K1 and K2 are the value of K1 (ξ, (φt.Vt)) and K2 (1− ξ, (φt.χt)) at the optimal value of ξ, and define
the following quantity:

φ̃t = φt + Yt = (1− η)φt + η (φt.χt) (K1ξVt +K2 (1− ξ)χt)

and rewrite the vector W involved in the consumption as:

W = uX + vY + γφt

Wt =
(
1− ρ+ δρV tt (φt + Yt)

)
Vt + γφt + ε

(
(Vt − χt)

t
(φt + Yt)

)
(Vt − χt)

u = 1− ρ+ δρV tt (φt + Yt) = 1− ρ+ δρXt (φt + Yt) = 1− ρ+ δρ
(
Xtφ̃t

)
= 1− ρ+ δρ ((1− η)φt.Vt + η (φt.χt) (K1ξ + (1− 2z)K2 (1− ξ)))

v = ε
(

(Vt − χt)
t
(φt + Yt)

)
= εY t (φt + Yt) = ε

(
Y tφ̃t

)
= ε ((1− η)φt. (Vt − χt) + 2zη (φt.χt) (K1ξ −K2 (1− ξ)))

The consumption is thus given by (5):

C = MW =
((γ + 4 (β + ε) z)u− 2 (α+ δρ) zv − (α+ δρ) γXtφt)

(γ + 4 (β + ε) z) (γ + (α+ δρ))− 4 (α+ δρ) (β + ε) (z)
2X

+
((γ + (α+ δρ)) v − 2 (β + ε) zu− (β + ε) γY tφt)

(γ + 4 (β + ε) z) (γ + (α+ δρ))− 4 (α+ δρ) (β + ε) (z)
2Y

+γ
γ + 4 (β + ε) z + (α+ δρ)

(γ + 4 (β + ε) z) (γ + (α+ δρ))− 4 (α+ δρ) (β + ε) (z)
2φt

And the dynamics for φt is deduced from the intertemporal constraint equation:

φt+1 = φt + Yt − Ct (8)

=

(
η (φt.χt) (K1ξ +K2 (1− ξ))− ((γ + 4 (β + ε) z)u− 2αzv − αγVt.φt)

(γ + 4 (β + ε) z) (γ + α)− 4α (β + ε) (z)
2

)
Vt

−
(
η (φt.χt)K2 (1− ξ) +

((γ + α) v − 2 (β + ε) zu− (β + ε) γ (Vt − χt) .φt)
(γ + 4 (β + ε) z) (γ + α)− 4α (β + ε) (z)

2

)
(Vt − χt)

+

(
(1− η)− γ γ + 4 (β + ε) z + α

(γ + 4 (β + ε) z) (γ + α)− 4α (β + ε) (z)
2

)
φt
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We also choose

K1 (ξ, (φt.Vt)) = K1 + (Φt.Vt) K̂1

K2 (ξ, (φt.Vt)) = K2 + (Φt.χt) K̂2

in K1 (φt.χt) ξ +K2 (φt.χt) (1− ξ), ξ depends on Vt. However, due to the envelop theorem, the production
functions do not depend,to the first order, on the derivatives of ξ with respect to the other parameters.
As a consequence we can, in first approximation consider ξ as a constant. It’s dependence in the other
parameters, Vt and χt is of second order only, that is ξ = 1+ϕz

2 as second order approximation, with ϕ a
constant parameter.

Case 1

We start to solve the benchmark case Vt = χt so that z = 0 : The dynamics equation (8) reduces to:

φt+1 = φt + Yt − Ct

=

(
η (φt.χt) (K1ξ +K2 (1− ξ))− (u− αχt.φt)

γ + (α+ δρ)

)
χt − ηφt

and

u = 1− ρ+ δρ ((1− η) + η (K1ξ + (1− 2z)K2 (1− ξ))) (φt.χt)

v = 0

multiplied by χt yields the following equation for the dynamics of the capital stock value:〈
Φt+1.χt+1

〉
√

1− σ2
=

(
η (K1 − 1) +

−δρ ((1− η) + ηK1) + α+ δρ

γ + α+ δρ

)
〈Φt.χt〉−

1− ρ
(γ + α+ δρ)

+η

(
1− δρ

γ + α+ δρ

)
K̂1 〈Φt.χt〉

2

or equivalently:〈
Φt+1.χt+1

〉
√

1− σ2
=

((
η (K1 − 1) +

α− δρη (K1 − 1)

γ + α+ δρ

)
〈Φt.χt〉 −

1− ρ
(γ + α+ δρ)

+ η

(
γ + α

γ + α+ δρ

)
K̂1 〈Φt.χt〉

2

)
Let us consider the following exogenous dynamics for χt:

χt+1 = χt + δt+1

Normalizing the vector of values: 1 = χ2
t+1 = 1 + 2χt.δt+1 + δ2

t+1 leads to the relation

χt.δt+1 = −1

2
δ2
t+1

so that δt+1 is not orthogonal to χt. Statistically, we decompose χt+1 as: χt+1 = χt+ δt+1 = χt+xχt+εt+1

with 〈εt+1〉 = 0,
〈
ε2
t+1

〉
= σ2, 〈χt.εt+1〉 = 0. The condition on the norm becomes:

1 =
〈

(χt + xχt + εt+1)
2
〉

= 1 + 2x+ x2 + σ2

so that x = −1 +
√

1− σ2 and:

χt+1 =
√

1− σ2χt + εt+1〈
χt+1.χt

〉
=

√
1− σ2 =

〈
1− 1

2
δ2
t+1

〉
In mean we thus have:〈

Φt+1.χt+1

〉
√

1− σ2
=

(
η (K1 − 1) +

α− δρη (K1 − 1)

γ + α+ δρ

)
〈Φt.χt〉 −

1− ρ
(γ + α+ δρ)

+ η

(
γ + α

γ + α+ δρ

)
K̂1

〈
(Φt.χt)

2
〉
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since the expectation is taken on χt+1, at time t,
〈

(Φt.χt)
2
〉

= 〈Φt.χt〉
2, and one is led to:〈

Φt+1.χt+1

〉
√

1− σ2
=

(α+ η (α+ γ) (K1 − 1))

α+ γ + δρ
〈Φt.χt〉 −

1− ρ
(γ + α+ δρ)

+ η
γ + α

γ + α+ δρ
K̂1 〈Φt.χt〉

2

This is an equation of type:
Φt+1.χt+1 = aΦt.χt − b+ c (Φt.χt)

2

where:

a =

(
(α+ η (α+ γ) (K1 − 1))

α+ γ + δρ

)√
1− σ2

b =
1− ρ

γ + α+ δρ

√
1− σ2

c = η
γ + α

γ + α+ δρ

√
1− σ2K̂1

Such an equation can be solved by a continuous time approximation:

y′ = (a− 1) y − b+ cy2

whose solution is:

Φ (t) .χ (t) =
Φ+ − Φ− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆t)

1− Φ0.χ0−Φ+

Φ0.χ0−Φ− exp (∆t)

with:

∆ =

√
(a− 1)

2
+ 4bc

Φ± =
− (a− 1)±∆

2c
Φ0.χ0 = Φ (0) .χ (0)

As explained in the text, the dynamics presents a threshold pattern. Since Φ− < 0,
If Φ0.χ0 < Φ+ then the dynamics converges, Φ (t) .χ (t)→ 0.

If Φ+ < Φ0.χ0 then dynamics the explodes in finite time Φ (t) .χ (t)→ 1
a ln

(
Φ−−Φ0.χ0
Φ+−Φ0.χ0

)
.

If the initial social value of the stock is low, then decrease of the stock. For large enough initial value,
explosive accumulation.

Case 2

To modify the solution of the previous case and take into account the heterogenity of agents with respect
to the society as a whole, i.e. adding corrections due to (Vt − χt) we consider that Vt differs from χt in the
following way:

Vt =
√

1− σ̃2χt + ε̃t

where ε̃t is random gaussian, with mean zeo and variance σ̃2 independant from εt.
We compute some expectations that are relevant to derive the dynamics for the social value of the capital

stock. 〈
(Vt − χt) .χt+1

〉
=

〈
(Vt − χt) .

(√
1− σ2χt + εt

)〉
=

〈((√
1− σ̃2 − 1

)
χt + ε̃t

)
.
(√

1− σ2χt + εt

)〉
=

(√
1− σ̃2 − 1

)√
1− σ2
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〈
Vt.χt+1

〉
=

〈
Vt.
(√

1− σ2χt + εt

)〉
=

〈((√
1− σ̃2

)
χt + ε̃t

)
.
(√

1− σ2χt + εt

)〉
=

√
1− σ̃2

√
1− σ2

and:

〈z〉 =

〈
1− Vt.χt

2

〉
=

1− 〈Vt.χt〉
2

=
1−

〈(√
1− σ̃2χt + ε̃t

)
.χt

〉
2

=
1−

√(
1− σ̃2

)
2

We will also need the expectations of some squared terms, as
〈

(Φt.Vt)
2
〉
, 〈(Φt.Vt) (χt.Vt)〉, 〈(χt.Vt) (χt.Vt)〉

and
〈
(Φt.Vt)

(
Φt.χt+1

)〉
. Note that

〈
(Φt.Vt)

2
〉

= 〈(Φt.Vt) (Φt.Vt)〉. These terms involve contributions as∑〈
(Φt)i . (ε̃t)i (Φt)i . (ε̃t)j

〉
or
∑〈

(Φt)i . (ε̃t)i (Φt)i . (εt+1)j

〉
. The second term is nul, given the indepen-

dance of ε̃t and εt+1. The other terms involve contributions like
〈

(φt.ε̃t)
2
〉
, 〈(φt.ε̃t) (χt.ε̃t)〉,

〈
(χt.ε̃t)

2
〉
.

Let us consider the first term only, the reasonning is similar for the others.
Since we are working with vectors with large number of components, and given that the random terms (ε̃t)

and (εt+1) are gaussian and isotropic, the expectations can be computed to get:
∑〈

(Φt)i (ε̃t)i (Φt)i (ε̃t)j

〉
=∑

(Φt)i (Φt)i

〈
(ε̃t)i (ε̃t)j

〉
=
∑

(Φt)i (Φt)i
σ̃2

N = φt.φt
N σ̃2.

As a consequence, all variance terms arising in the mean of squared values are of order 1
N and arenegligible.

We will thus write (Φt.Vt)
2

= 〈Φt.Vt〉2 and the same for other quantities.
For the same reasons, and for the sake of simplicity, in the sequel we will implicitely understand z,

everywhere it appears, as it’s mean value, that is
1−
√

(1−σ̃2)

2 .
We will also assume K1 = K2, K̂1 = K̂2. We also write ξ = 1

2 (1 + ϕz) (the optimal choice is to produce
toward Vt, since the agent has a comparative advantage in this direction. This choice of parametrization
is justified by the envelop th. ensuring that ξ should be of second order in Vt − χt. As shown before the
correction is actually proportional to z, and in first approximation it’s value depends on the derivatives of
the productivity that are incuded in the factor ϕ).

(K1ξ +K2 (1− ξ)) = K1 +
1

2

(
1 +

√
1− σ̃2 + ϕz

(√
1− σ̃2 − 1

))
K̂1 (φt.χt) +

1

2
(1 + ϕz) K̂1 (φt.ε̃t)

(K1ξ −K2 (1− ξ)) = ϕzK1 +
1

2
K̂1

(√
1− σ̃2 − 1 + ϕz

(
1 +

√
1− σ̃2

)
(φt.χt)

)
+

1

2
(1 + ϕz) K̂1 (φt.ε̃t)

〈(K1ξ +K2 (1− ξ))〉 = K1 +
1

2

(
1 +

√
1− σ̃2 + ϕz

(√
1− σ̃2 − 1

))
K̂1 (φt.χt)

〈(K1ξ −K2 (1− ξ))〉 = ϕzK1 +
1

2
K̂1

(√
1− σ̃2 − 1 + ϕz

(
1 +

√
1− σ̃2

))
(φt.χt)

〈K1ξ〉 =
1 + ϕz

2

(
K1 + K̂1 (φt.χt)

√
1− σ̃2

)
〈K2ξ〉 =

1− ϕz
2

(
K1 + K̂1 (φt.χt)

)
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One is lead to the following dynamic for 〈φt.χt〉 :〈
φt+1.χt+1

〉
= η 〈φt.χt〉 〈K1ξ +K2 (1− ξ)〉

〈
Vt.χt+1

〉
− ((γ + 4 (β + ε) z) 〈u〉 − 2 (α+ ρδ) z 〈v〉 − (α+ ρδ) γ 〈Vt.φt〉)

(γ + 4 (β + ε) z) (γ + α+ ρδ)− 4 (α+ ρδ) (β + ε) (z)
2

〈
Vt.χt+1

〉
−η 〈φt.χt〉 〈K2 (1− ξ)〉

〈
(Vt − χt) .χt+1

〉
− ((γ + α+ ρδ) 〈v〉 − 2 (β + ε) z 〈u〉 − (β + ε) γ 〈(Vt − χt) .φt〉)

(γ + 4 (β + ε) z) (γ + α+ ρδ)− 4 (α+ ρδ) (β + ε) (z)
2

〈
(Vt − χt) .χt+1

〉
+

(
(1− η)− γ γ + 4 (β + ε) z + α+ ρδ

(γ + 4 (β + ε) z) (γ + α+ ρδ)− 4 (α+ ρδ) (β + ε) (z)
2

)〈
φt.χt+1

〉
In the sequel, we will consider the simplification γ = 0. It makes the computation more tractable and will
not impair the arguments. The previous equation reduces to:

〈
φt+1.χt+1

〉
=

(
η 〈φt.χt〉 〈K1ξ +K2 (1− ξ)〉 − 4 (β + ε) z 〈u〉 − 2 (α+ ρδ) z 〈v〉

(4 (β + ε) z) (α+ ρδ)− 4 (α+ ρδ) (β + ε) (z)
2

)〈
Vt.χt+1

〉
−
(
η 〈φt.χt〉 〈K2 (1− ξ)〉+

((α+ ρδ) 〈v〉 − 2 (β + ε) z 〈u〉)
4 (β + ε) z (α+ ρδ)− 4 (α+ ρδ) (β + ε) (z)

2

)〈
(Vt − χt) .χt+1

〉
+ (1− η)

〈
φt.χt+1

〉
Now, compute some relevant quantities given the chosen assumptions.

〈K1ξ〉 =
1 + ϕz

2

(
K1 + K̂1 (φt.χt)

√
1− σ̃2

)
〈K2ξ〉 =

1− ϕz
2

(
K1 + K̂1 (φt.χt)

)
〈√

1− σ̃2K1ξ +K2 (1− ξ)
〉

=

√
1− σ̃2 (1 + ϕz) + (1− ϕz)

2
K1 +

(
1− σ̃2

)
(1 + ϕz) + (1− ϕz)

2
K̂1 (φt.χt)

=
(1− 2z) (1 + ϕz) + (1− ϕz)

2
K1 +

(1− 2z)
2

(1 + ϕz) + (1− ϕz)
2

K̂1 (φt.χt)

〈
(Vt − χt) .χt+1

〉
=
(√

1− σ̃2 − 1
)√

1− σ2

〈
Vt.χt+1

〉
=
√

1− σ̃2
√

1− σ2〈
φt.χt+1

〉
= 〈φt.χt〉

√
1− σ2

which allows to rewrite:〈
φt+1.χt+1

〉
√

1− σ2
= η (φt.χt)

〈√
1− σ̃2K1ξ +K2 (1− ξ)

〉
−

2z (β + ε)
(

1 +
√

1− σ̃2
)
〈u〉+

(
(1− 2z)

√
1− σ̃2 − 1

)
α 〈v〉

4zα (β + ε) (1− z)
+ (1− η) 〈φt.χt〉
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The relevant quantities 〈u〉 and 〈v〉 can be expanded as:

〈u〉 = 1− ρ

+ρδ

(
(1− η) (1− 2z) + η

(
τ

1 + ϕz

2

(
K1 + K̂1 (φt.χt) (1− 2z)

)
+ (1− 2z)

1− ϕz
2

(
K1 + K̂1 (φt.χt)

)))
(φt.χt)

= 1− ρ
+ρδ (1− η) (1− 2z) (φt.χt)

+ηρδ

(
K1

2

(
−2z + τ − zϕ+ 2z2ϕ+ zτϕ+ 1

)
+

(1− 2z)

2
(τ − zϕ+ zτϕ+ 1) K̂1 (φt.χt)

)
(φt.χt)

= 1− ρ

+ρδ

(
(1− η) (1− 2z) + η

(
K1

2

(
−2z + τ − zϕ+ 2z2ϕ+ zτϕ+ 1

)))
(φt.χt)

+ρδ

(
(1− 2z)

2
(τ − zϕ+ zτϕ+ 1) K̂1 (φt.χt)

2

)

〈v〉 = ε ((1− η)φt. (Vt − χt) + 2zη (φt.χt) (K1ξ −K2 (1− ξ)))

= ε2z

〈
− (1− η) + η

(
1 + ϕz

2
τ
(
K1 + (1− 2z) K̂1 (φt.χt)

)
− 1− ϕz

2

(
K1 + K̂1 (φt.χt)

))〉
(φt.χt)

And the following usefull combination of these terms are then:

−
2z (β + ε)

(
1 +

√
1− σ̃2

)
〈u〉+

(
(1− 2z)

√
1− σ̃2 − 1

)
(α+ ρδ) 〈v〉

4z (α+ ρδ) (β + ε) (1− z)

= −
4z (β + ε) (1− z) 〈u〉+

(
(1− 2z)

2 − 1
)

(α+ ρδ) 〈v〉
4z (α+ ρδ) (β + ε) (1− z)

= −4z (β + ε) (1− z) 〈u〉 − 4z (1− z) (α+ ρδ) 〈v〉
4z (α+ ρδ) (β + ε) (1− z)

= − (β + ε) 〈u〉 − (α+ ρδ) 〈v〉
(α+ ρδ) (β + ε)

(β + ε) 〈u〉 − α 〈v〉

= (β + ε)
(

1− ρ+ δ
(
(1− η) (1− 2z) + η

(
K1

(
1− z + z2ϕ

)))
(φt.χt) + δη

(
(1− 2z) K̂1 (φt.χt)

2
))

−α2zε
(
− (1− η) + η

(
ϕzK1 + z (ϕ− zϕ− 1) K̂1 (φt.χt)

))
(φt.χt)

= (β + ε) (1− ρ) +
(
(β + ε)

(
δ
(
(1− η) (1− 2z) + η

(
K1

(
1− z + z2ϕ

))))
− α2zε (− (1− η) + ηϕzK1)

)
(φt.χt)

+
(

(β + ε) (δη ((1− 2z)))− α2zε
(
η
(
z (ϕ− zϕ− 1) K̂1

)))
K̂1 (φt.χt)

2

So that the dynamics in it’s expanded form is thus:〈
φt+1.χt+1

〉
η
√

1− σ2
=

(
(1− 2z) τ (1 + ϕz) + (1− ϕz)

2
K1

)
〈φt.χt〉

−


(
δρ
(

(1−η)(1−2z)
η + K1

2

(
−2z + τ − zϕ+ 2z2ϕ+ zτϕ+ 1

)))
α+ δρ

− (1− η)

η

 〈φt.χt〉
+

(
(1− 2z)

2
τ (1 + ϕz) + (1− ϕz)

2
− δρ (1− 2z) (τ − zϕ+ zτϕ+ 1)

2 (α+ δρ)

)
K̂1 〈φt.χt〉

2

− (1− ρ)

(α+ δρ) η
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Reordering the various terms and applying the same treatment as for case 1 leads directly to the results
presented in text.

Case 3

The dynamical system describing the evolution of Vt and χt is now:

Vt =
√

1− σ̃2χt + ε̃t

χt+1 =
√

1− σ2Vt + εt

as explained in the text, it describes the evolution in social values by a group of precursor agents. Note that
the second equation can be rewritten as:

χt+1 =
√

(1− σ2)
(
1− σ̃2

)
χt + εt +

√
1− σ2ε̃t

By the same techniques described in the previous case, we find the dynamics for the stock of capital goods:

φt+1 = η (φt.χt)K1ξ

(
1− ρδ

2 (1− z) (α+ ρδ)

)
Vt

−
(

1− ρ+ ρδ (1− η)φt.Vt
2 (1− z) (α+ ρδ)

+
ρδη (φt.χt) ((1− 2z)K2 (1− ξ))

2 (1− z) (α+ ρδ)

)
Vt

+η (φt.χt)K2 (1− ξ)
(

1− ρδ (1− 2z)

2 (1− z) (α+ ρδ)

)
χt

−
(

1− ρ+ ρδ (1− η)φt.Vt
2 (1− z) (α+ ρδ)

+
ρδη (φt.χt)K1ξ

2 (1− z) (α+ ρδ)

)
χt + (1− η)φt

= η (φt.χt)

(
1 + ϕz

2

)(
K1 + K̂1φt.Vt

)(
1− ρδ

2 (1− z) (α+ ρδ)

)
Vt

−

1− ρ+ ρδ (1− η)φt.Vt
2 (1− z) (α+ ρδ)

+
ρδη (φt.χt)

(
(1− 2z)

(
1−ϕz

2

) (
K2 + K̂2φt.χt

))
2 (1− z) (α+ ρδ)

Vt

+η (φt.χt)

(
1− ϕz

2

)(
K2 + K̂2φt.χt

)(
1− ρδ (1− 2z)

2 (1− z) (α+ ρδ)

)
χt

−

1− ρ+ ρδ (1− η)φt.Vt
2 (1− z) (α+ ρδ)

+
ρδη (φt.χt)

(
1+ϕz

2

) (
K1 + K̂1φt.Vt

)
2 (1− z) (α+ ρδ)

χt + (1− η)φt

Define yt = φt.χt and set τ = 1, so that we will focus only on the precursor effect, that is the consequence
of endogenizing χt, disgarding the influence of an advantage in productivity for Vt. We also normalize the
coeffi cients to α = 1, δ = 1, K1 = K2 = 1, K̂1 = K̂2.

One is led to:
yt+1√
1− σ2

= −1− ρ
ρ+ 1

+
zη − 2z + z2ηϕ+ 1

ρ+ 1
yt +

(1− 2z) ηK̂1

ρ+ 1
y2
t

Once again, the dynamics presents a threshold pattern, with

Φ+ =
−
(

(zη (1 + zϕ) + 1− 2z)− 1+ρ√
1−σ2

)
+

√(
(zη (1 + zϕ) + 1− 2z)− 1+ρ√

1−σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1

2 (1− 2z) ηK̂1
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The variations of the threshold with respect to some of the parameters are computed straightforwardly:

∂Φ+

∂σ2
> 0

∂Φ+

∂K̂1

< 0

∂Φ+

∂ (1 + zϕ)
< 0

∂Φ+

∂η
= − z (1 + zϕ)

2 (1− 2z) ηK̂1

1−

(
(zη (1 + zϕ) + 1− 2z)− 1+ρ√

1−σ2

)
√(

(zη (1 + zϕ) + 1− 2z)− 1+ρ√
1−σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1


+
K̂1

η

∂Φ+

∂K̂1

and thus:
∂Φ+

∂η
< 0

Concerning ∂Φ+

∂ρ , remark that

2 (1− 2z) ηK̂1
∂Φ+

∂ρ
=

1√
1− σ2

+
−
(

(zη (1 + zϕ) + 1− 2z)− 1+ρ√
1−σ2

)
− 2
√

1− σ2 (1− 2z) ηK̂1

√
1− σ2

√(
(zη (1 + zϕ) + 1− 2z)− 1+ρ√

1−σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1

As a consequence, ∂Φ+

∂ρ > 0 if

0 <

√(
(zη (1 + zϕ) + 1− 2z)− 1 + ρ√

1− σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1

−
((

(zη (1 + zϕ) + 1− 2z)− 1 + ρ√
1− σ2

)
+ 2
√

1− σ2 (1− 2z) ηK̂1

)
Given that, (

(zη (1 + zϕ) + 1− 2z)− 1 + ρ√
1− σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1

−
(

(zη (1 + zϕ) + 1− 2z)− 1 + ρ√
1− σ2

+ 2
√

1− σ2 (1− 2z) ηK̂1

)2

= (1− ρ)−
(

(zη (1 + zϕ) + 1− 2z)− 1 + ρ√
1− σ2

)√
1− σ2 −

(
1− σ2

)
(1− 2z) ηK̂1

= 2− ((zη (1 + zϕ) + 1− 2z))
√

1− σ2 −
(
1− σ2

)
(1− 2z) ηK̂1

one obtains:

∂Φ+

∂ρ
< 0 if ηK̂1 >

2− ((zη (1 + zϕ) + 1− 2z))
√

1− σ2

1− σ2

∂Φ+

∂ρ
> 0 otherwise.

For the last parameter, z, let us call

a =

(
(zη (1 + zϕ) + 1− 2z)− 1 + ρ√

1− σ2

)
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and note that:
∂a

∂z
= η (1 + zϕ)− 2 < 0

We can thus write:

∂Φ+

∂z
=

1

2 (1− 2z) ηK̂1

∂a

∂z

−1 +
a√(

(zη (1 + zϕ) + 1− 2z)− 1+ρ√
1−σ2

)2

+ 4 (1− ρ) (1− 2z) ηK̂1


−2

K̂1

(1− 2z)

∂Φ+

∂K̂1

so that:
∂Φ+

∂z
> 0

Case 4

In that case, we consider again the normalization α = 1, δ = 1 and we assume that each agent produces only
it’s own good, that is, his production is proportionnal to Vt. In other word, we assume that the productivity
of agent i is Ki = Ki + K̂i (φt.Vt). We also assume the normalization Ki = 1, that is Ki = 1 + K̂i (φt.Vt),
and K̂1 = K̂2.
Given these assumptions, the dynamics for φt of any group is then:

φt+1 =
(
η (φt.χt)

(
1 + K̂1 (φt.Vt)

))
Vt

−

1− ρ+ δρ
(

(1− η)φt.Vt + η (φt.χt)
(

1 + K̂1 (φt.Vt)
))

(1 + ρ) (1− z)

 χt + Vt
2

+ (1− η)φt

or, setting yt = (φt.χt)

φt+1 =
(
ηyt

(
1 + K̂1 (φt.Vt)

))
Vt−

1− ρ+ δρ
(

(1− η)φt.Vt + ηyt

(
1 + K̂1 (φt.Vt)

))
(1 + ρ) (1− z)

 χt + Vt
2

+(1− η)φt

Now use the hypothesis described in the text. The values V (i)
t are assumed, for the sake of simplicity to be

constant and orthogonals.

V
(1)
t = V

(1)
0

V
(2)
t = V

(2)
0

V
(1)
t .V

(2)
t = V

(1)
0 .V

(2)
0 = 0

The social value at time t+1 is a weighted sum of the 2 groups values, the weight beeing given by the relative
social value of the stock of each group at time t. In other words, the social value evolves endogeneously
according to the relative evolution of the two groups.

χt+1 =

(
φ

(1)
t .χt

)
V

(1)
t +

(
φ

(2)
t .χt

)
V

(2)
t√(

φ
(1)
t .χt

)2

+
(
φ

(2)
t .χt

)2

+ 2
(
φ

(1)
t .χt

)(
φ

(2)
t .χt

)
V

(1)
t .V

(2)
t

(9)

=
y

(1)
t V

(1)
0 + y

(2)
t V

(2)
0√(

y
(1)
t

)2

+
(
y

(2)
t

)2

+ 2
(
y

(1)
t

)(
y

(2)
t

)
w
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As before, we define, for each group the measure of the angle between χt and V
(i)
0 as:

1− 2z(i) = χt.V
(i)
0

Inserting those notations yields the dynamics for φ(i)
t and y(i)

t .

φ
(i)
t+1 = ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

))
V

(i)
0

−

1− ρ+ δρ
(

(1− η)φ
(i)
t .V

(i)
0 + ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

)))
(1 + ρ)

(
1− z(i)

)
 χt + V

(i)
0

2

+ (1− η)φ
(i)
t

y
(i)
t+1 = ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

)) y
(i)
t√(

y
(1)
t

)2

+
(
y

(2)
t

)2

−

1− ρ− δ
(

(1− η)φ
(i)
t .V

(i)
0 + ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

)))
1− z(i)

 y
(i)
t

(
1− z(i)

)
+ y

(3−i)
t

(
1−2z(3−i)

2

)
√(

y
(1)
t

)2

+
(
y

(2)
t

)2

+ (1− η)
y

(i)
t φ

(i)
t .V

(i)
0 + y

(3−i)
t φ

(i)
t .V

(3−i)
0√(

y
(1)
t

)2

+
(
y

(2)
t

)2

However, we will not describe the dynamics in terms of y(i)
t . We will rather focus on the dynamics of two

other variables, and deduce the evolution of y(i)
t from these equations.

To do so, we will need the evolution of the personnal value of the stock of agent i:

φ
(i)
t+1.V

(i)
0 = ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

))
−

1− ρ+ δρ
(

(1− η)φ
(i)
t .V

(i)
0 + ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

)))
(1 + ρ)

(
1− z(i)

)
 z(i) + 1

2

+ (1− η)φ
(i)
t .V

(i)
0

as well as the evolution of the value attributed by agent 3− i to the stock of agent i:

φ
(i)
t+1.V

(3−i)
0 = −

1− ρ+ δρ
(

(1− η)φ
(i)
t .V

(i)
0 + ηy

(i)
t

(
1 + K̂1

(
φ

(i)
t .V

(i)
0

)))
(1 + ρ)

(
1− z(i)

)
 z(3−i)

2
+ (1− η)φ

(i)
t .V

(3−i)
0

We will denote these expressions by a letter x, that is:

x
(i,i)
t = φ

(i)
t .V

(i)
0

x
(i,3−i)
t = φ

(i)
t .V

(3−i)
0

We thus have the relations

φ
(i)
t+1.χt+1 =

(
φ

(i)
t .χt

)
φ

(i)
t+1.V

(i)
0 +

(
φ

(3−i)
t .χt

)
φ

(i)
t+1.V

(3−i)
0√(

φ
(1)
t .χt

)2

+
(
φ

(2)
t .χt

)2
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or,

y
(i)
t+1 =

∑
j y

(j)
t x

(i,j)
t+1√∑

j y
(j)
t y

(j)
t

(10)

which expresses y(i)
t+1 as a function of the x

(i,j)
t+1 . The dynamics system will then rather be expressed in terms

of the variables x(i,j)
t , where i and j run from 1 to 2. It is straightforward to get:

x
(i,j)
t+1 = ηy

(i)
t

(
1 + K̂1x

(i,i)
t

)
δi,j (11)

−

1− ρ+ δρ
(

(1− η)x
(i,i)
t + ηy

(i)
t

(
1 + K̂1x

(i,i)
t

))
(1 + ρ)

(
1− z(i)

t

)
 z

(j)
t + δi,j

2
+ (1− η)x

(i,j)
t

where δi,j is the Kronecker symbol, and y
(i)
t+1 is deduced from (yi).

These equations have to be supplemented with the dynamics for the variables z(i)
t+1. They are derived

from the definition of (9)

1− 2z
(i)
t+1 = χt+1.V

(i)
0 =

y
(i)
t√∑

j y
(j)
t y

(j)
t

(12)

We are first interested in the equilibrium of the system. We only look for feasible equilibria, i.e., equilibria
such that y(i), x(i,j), and z(i) have positive values. It corresponds to an equilibrium for which the equilibrium
social value is located between V (1)

0 and V (2)
0 .

Proposition 1 For generic values of the parameters, there is no equilibrium for the system given by the
equations (10), (11) and (12).

Proof. The equations for a possible equilibrium are:

y(i) =

∑
j y

(j)x(i,j)√∑
i,j y

(i)y(j)wi,j

x(i,j) = ηy(i)
(

1 + K̂1x
(i,i)
)
δi,j

−

1− ρ− δ
(

(1− η)x(i,i) + ηy(i)
(

1 + K̂1x
(i,i)
))

(1 + ρ)
(
1− z(i)

)
 z(j) + δi,j

2
+ (1− η)x(i,j)

1− 2z(i) =
y(i)√∑
j y

(j)y(j)
(13)

We focus on the equation for i = 1, the proof is symetric for i = 2.

ηx(1,1) = ηy(1)
(

1 + K̂1x
(1,1)

)
−
(

1− ρ+ ρ
(

(1− η)x(1,1) + ηy(1)
(

1 + K̂1x
(1,1)

))) z(1) + 1

2 (1 + ρ)
(
1− z(1)

)
ηx(1,2) = −

(
1− ρ+ ρ

(
(1− η)x(1,1) + ηy(1)

(
1 + K̂1x

(1,1)
))) z(1)

2 (1 + ρ)
(
1− z(1)

)
Which leads to express x(1,2) as a function of x(1,1), z(1) and y(1)

x(1,2) =
z(1)x(1,1)

(
1− K̂1y

(1)
)
− y(1)z(1)

z(1) + 1
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and x(1,1), as a function of z(1) and y(1):

x(1,1) =
2 (ρ+ 1)

(
z(1) − 1

)
ηy(1) +

(
1− ρ+ ηρy(1)

) (
z(1) + 1

)
2 (ρ+ 1)

(
z(1) − 1

)
η
(

1− y(1)K̂1

)
−
(
z(1) + 1

)
ρ
(
y(1)ηK̂1 + 1− η

)
The condition x(1,2) > 0 implies that y(1) < 1

K̂1
and x(1,1) > 0 leads to

y(1) >
(1− ρ) (z + 1)

η (ρ− 2z − 3zρ+ 2)

Inserting x(1,1) in the expression for x(1,2) allows to find an other condition for x(1,2) > 0:

(ρ− (1− ρ)K1) < 0 and y(1) >
1− ρ

(1− ρ)K1 − ρ
(14)

so that, combined with y(1) < 1
K̂1
, yields:

1

K1
> y(1) >

1− ρ
(1− ρ)K1 − ρ

which is satisfied only if
(ρ− (1− ρ)K1) > 0

a contradiction with the first inequality of 14.

Proposition 2 a) If y(1)
0 = y

(2)
0 and x(i,3−i)

0 = x0(3−i,i) there is a solution to the system with 1−2z
(i)
t = 1√

2
,

x
(i,3−i)
t → 0 below a certain threshold (a lower bound for this threshold is given below), and x(i,i)

t → ∞
otherwise. This solution corresponds to a symetric situation in which χt =

V
(1)
0 +V

(2)
0√

2
, y(1)

t = y
(2)
t . This

dynamic is unstable. If 1− 2z
(1)
0 > 1√

2
, then 1− 2z

(1)
t → 1

Proposition 3 b) If 1− 2z
(1)
0 > 6= 1√

2
, then 1− 2z

(1)
t → 1 and 1− 2z

(1)
t → 0

Proof. For 1− 2z
(i)
t = 1√

2
, the system becomes:

x
(1,1)
t+1 = η

x(1,1) + x(1,2)

√
2

(
1 + K̂1x

(1,1)
)

−
(

1− ρ+ ρ

(
(1− η)x(1,1) + η

x(1,1) + x(1,2)

√
2

(
1 + K̂1x

(1,1)
))) 3− 2

√
2

2 (1 + ρ)
+ (1− η)x(1,1)

x
(1,2)
t+1 = −

(
1− ρ+ ρ

(
(1− η)x(1,1) + η

x(1,1) + x(1,2)

√
2

(
1 + K̂1x

(1,1)
))) 5− 2

√
2

34 (1 + ρ)
+ (1− η)x

(1,2)
t

From the second equation, one deduces that:

x
(1,2)
t+1 − x

(1,2)
t < 0

Since there is no equilibrium with x(1,2)
t > 0, then x(1,2)

t → 0.
From the first equation x(1,1)

t+1 − x
(1,1)
t > 0 only if

η
x(1,1) + x(1,2)

√
2

(
1− 3− 2

√
2

2 (1 + ρ)
ρ

)(
1 + K̂1x

(1,1)
)
−
(

1− ρ+ ρ
(

(1− η)x(1,1)
)) 3− 2

√
2

2 (1 + ρ)
− ηx(1,1) > 0

that is if

x
(1,1)
0 >

−a+
√
a2 + b

c
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where:

a =

(
1

2

√
2η

(
1− 3− 2

√
2

2 (1 + ρ)
ρ

)(
1 + x(1,2)K1

)
− ρ 1− η

2ρ+ 2

(
3− 2

√
2
)
− η
)

b = −2ηK1

(
1− 3− 2

√
2

2 (1 + ρ)
ρ

)(
x(1,2)η

(
1− 3− 2

√
2

2 (1 + ρ)
ρ

)
− 1− ρ

2 (1 + ρ)

(
3− 2

√
2
))

c =
√

2ηK1

(
ρ

2ρ+ 2

(
2
√

2− 3
)

+ 1

)
Thus, above a certain threshold depending on the initial conditions for x(1,1) and x(1,2), the value of x(1,1)

will go to ∞, and x(1,1) → 0 below this threshold. Set x(1,2) = 0, then a lower bound for the threshold is,

x
(1,1)
0 >

−a′ +
√
a′2 + b′

c

with:

a′ =

(
1

2

√
2η

(
1− 3− 2

√
2

2 (1 + ρ)
ρ

)
− ρ 1− η

2ρ+ 2

(
3− 2

√
2
)
− η
)

b′ = 2ηK1

((
1− 3− 2

√
2

2 (1 + ρ)
ρ

))(
1− ρ

2 (1 + ρ)

(
3− 2

√
2
))

Since the equations are symetric between the 2 agents, the dynamics ae identical if the initial conditions are
equal, and then 1− 2z

(i)
t = 1√

2
.

b) Let us compute the variation of the dynamics with respect to a small change δz(1) in z(1) (the same
reasonning is valid for z(2)).
Starting from:

x
(1,1)
t+1 − x(1,1) = ηy(1)

(
1 + K̂1x

(1,1)
)
−
(

1− ρ+ ρ
(

(1− η)x(1,1) + ηy(1)
(

1 + K̂1x
(1,1)

))) z(1) + 1

2 (1 + ρ)
(
1− z(1)

)
−ηx(1,1)

x
(1,2)
t+1 − x(1,2) = −

(
1− ρ+ ρ

(
(1− η)x(1,1) + ηy(1)

(
1 + K̂1x

(1,1)
))) z(1)

2 (1 + ρ)
(
1− z(1)

) − ηx(1,2)

and expressing y(1) as a function of x(1,1) and x(1,2) one has:

x
(1,1)
t+1 − x(1,1) = η

((
1− 2z(1)

)
x(1,1) +

√
1−

(
1− 2z(1)

)2
x(1,2)

)(
1− ρ z(1) + 1

2 (1 + ρ)
(
1− z(1)

))(1 + K̂1x
(1,1)

)
−
(

1− ρ+ ρ
(

(1− η)x(1,1)
)) z(1) + 1

2 (1 + ρ)
(
1− z(1)

) − ηx(1,1)

x
(1,2)
t+1 − x(1,2) = −

(
1− ρ+ ρ

(
(1− η)x(1,1) + ηy(1)

(
1 + K̂1x

(1,1)
))) z(1)

2 (1 + ρ)
(
1− z(1)

) − ηx(1,2)

given that:

∂

∂z(1)

(
1− ρ z(1) + 1

2 (1 + ρ)
(
1− z(1)

)) < 0

− ∂

∂z(1)

z(1) + 1

2 (1 + ρ)
(
1− z(1)

) < 0
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one obtains

δx
(1,1)
t+1 > 0

δx
(1,2)
t+1 > 0

for
δz(1) < 0

Now, let

cosu =
(

1− 2z(1)
)

δu < 0

and start from cosu = 1√
2
to compute δy(1)

t+1

δy
(1)
t+1 = (cosu) δx

(1,1)
t+1 + (sinu) δx

(1,2)
t+1 +

(
(cosu)x

(1,2)
t+1 − (sinu)x

(1,1)
t+1

)
δu

=
1√
2

(
δx

(1,1)
t+1 + δx

(1,2)
t+1 +

(
x

(1,2)
t+1 − x

(1,1)
t+1

)
δu
)

Note that
(
x

(1,2)
t+1 − x

(1,1)
t+1

)
< 0, so that (

x
(1,2)
t+1 − x

(1,1)
t+1

)
δu > 0

As a consequence, if z(1) decreases, x(1,1)
t+1 and x

(1,2)
t+1 and then y(1)

t+1 increases. Symetrically y
(2)
t+1 decreases and

from (1-2z) we deduce that
(

1− 2z
(1)
t+1

)
−
(

1− 2z
(1)
t

)
> 0 and then z(1)

t+1 − z
(1)
t < 0.

This is the same reasoning for an arbitrary 1−2z(1), so that departing from 1−2z
(1)
0 = 1√

2
with δz(1) < 0

leads to z(1)
t → 0.

b) This is the consequence of a).
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