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Abstract

This paper presents an analytical treatment of economic systems with an arbitrary number of agents
that keeps track of the systems’ interactions and agents’ complexity. This formalism does not seek to
aggregate agents. It rather replaces the standard optimization approach by a probabilistic description of
both the entire system and agents’ behaviors. This is done in two distinct steps.

A first step considers an interacting system involving an arbitrary number of agents, where each
agent’s utility function is subject to unpredictable shocks. In such a setting, individual optimization
problems need not be resolved. Each agent is described by a time-dependent probability distribution
centered around his utility optimum. The entire system of agents is thus defined by a composite prob-
ability depending on time, agents’ interactions and forward-looking behaviors. This dynamic system is
described by a path integral formalism in an abstract space – the space of the agents’ actions – and is
very similar to a statistical physics or quantum mechanics system. We show that this description, applied
to the space of agents’ actions, reduces to the usual optimization results in simple cases.

Compared to a standard optimization, such a description markedly eases the treatment of systems
with small number of agents. It becomes however useless for a large number of agents. In a second step
therefore, we show that for a large number of agents, the previous description is equivalent to a more
compact description in terms of field theory. This yields an analytical though approximate treatment
of the system. This field theory does not model the aggregation of a microeconomic system in the
usual sense. It rather describes an environment of a large number of interacting agents. From this
description, various phases or equilibria may be retrieved, along with individual agents’ behaviors and
their interactions with the environment.

For illustrative purposes, this paper studies a Business Cycle model with a large number of agents.
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Introduction

In many instances, representative agent models have proven unrealistic, lacking both the collective and
emerging effects stemming from agents’ interactions. Complex systems, Networks, Agent Based Systems
or Econophysics are among the various paths that have been explored to remedy these pitfalls. However
Agent Based and Networks Models rely on numerical simulations and may lack microeconomic foundations.
Econophysics builds on statistical facts and empirical aggregate rules to derive macroeconomic laws. These
laws are prone, like ad-hoc macroeconomics, to the Lucas critique (see Lucas 1976). The gap between
microeconomic foundations and multi-agent systems remains.

The present paper attempts to fill this gap by adapting statistical physics methods to describe multiple
interacting agents. It is an introduction to the method developped in (Gosselin, Lotz, Wambst 2017),
illustrated by a basic economic application to a Business Cycle model. Our setup models individual, i.e.
micro interactions in a context of statistical uncertainty, to recover a global, macroeconomic description
of the system. This approach allows an analytical treatment of a broad class of economic models with an
arbitrary number of agents, while keeping track of the system’s interactions and complexity at the individual
level. It is at the crossroads of statistical physics and economics: it preserves the microeconomic concepts
of standard economic models to describe fully or partly rational agents, while enabling the study of the
transition from individual to collective scale given by statistical physics.

Are microeconomic concepts still relevant at the statistical system - macro - level? Some microscopic
features are known to fade away at large scales, whereas others become predominant. The relevance - or
irrelevance in the physical sense - of some micro interactions when moving to a macro scale could indirectly
shed some light on the change of scale in economics. Our work is a first attempt to address these questions.

Translating standard economic models into statistical ones requires a statistical field formalism. Such a
formalism partly differs from those used for physical systems. The field formalism presented in this paper
keeps track of the individual behaviors shaping the field theoretic description, as well as the results at the
macro scale. The field description, in turn, describes the impact of the macroeconomic environment on
individual behaviors.

The statistical approach of economic systems presented here is a two-step process. In a first step, the
usual model of optimizing agents is replaced by a probabilistic description of the system. In an interacting
system involving an arbitrary number of agents, each agent is described by an intertemporal utility function
depending on an arbitrary number of variables. However each agent’s utility function is subject to unpre-
dictable shocks. In such a setting, individual optimization problems are discarded. Each agent is described
by a time-dependent probability distribution centered around this agent’s utility optimum. Unpredictable
shocks deviate each agent from his optimal action, depending on each individual shock variance. When these
variances are null, standard optimization results are recovered. This so to speak blurred behavior can be
justified by the inherent complexity of agents: each period, their goals and behavior can be modified by some
internal, unobservable and individual shocks.

This setup is a path integral formalism in the abstract space of agents’ actions. It is actually very
similar to the statistical physics or quantum mechanics systems. This description is a good approximation of
standard descriptions and allows to solve otherwise intractable problems. Compared to standard optimization
techniques, such a description markedly eases the treatment of systems with a small number of agents.
Working with a probability distribution is often easier than solving optimization equations. This approach
is thus consistent and useful in itself. It provides an alternative to the standard modeling in the case of
a small number of interacting agents. The average dynamics recovered is close and at times identical to
the standard approach. It also allows to study the set of agents’ dynamics and its fluctuations under some
external shocks.

This formalism, useful for small sets, becomes intractable for a large number of agents. It is nonetheless
conveniently and classicaly modified using methods of statistical field theory (Kleinert 1989), into another
and more efficient description directly grounded on our initial path integral formalism. In a second step,
therefore, the individual agents’ description is replaced by a model of field theory that replicates the properties
of the system when N , the number of agents, is large. This modeling, although approximate, is compact
enough to allow an analytical treatment of the system. A double transformation is thus performed with
respect to the usual optimization models. The optimization problem is first replaced by a statistical system
of N agents, that is then itself replaced by a specific field theory with a large number of degrees of freedom.

2



This field theory does not represent an aggregation of microeconomic systems in the usual sense. It rather
describes an environment of an infinite number of interacting agents, from which various phases or equilibria
may be retrieved, as well as the behaviors of the agents, and the way they are influenced by, or interact,
with their environment. This is the so-called ”phase transition” of field theory: the configuration of the
ground state represents an equilibrium for the whole set of agents, and shapes interactions and individual
dynamics. Depending on the parameters of the system, the form of the ground state may change drastically
the description at the individual level. It is thus possible to compare the particular features of the macro
state of a system and those of the individual level. As such, it may confirm or invalidate some aspects of the
representative agent models.

By several aspects, our work is related to the Multi-Agents System economic literature, notably Agent
Based Models (see Gaffard Napoletano 2012) and Economic Networks (Jackson 2010). Both rely on numerical
simulation of Multi-Agents System, but are often concerned with different types of model. Agent Based
Models deal with general macroeconomics models, whereas Network Models rather deal with lower scale
models, such as Contract Theory, Behavior Diffusion, Information Sharing or Learning. In both type of
settings, agents are typically defined by, and follow, various set of rules. These rules allow for equilibria and
dynamics that would otherwise remain inaccessible to the representative agent setup.

The Agent-Based approach is similar to ours in that it does not seek to aggregate all agents, but considers
the interacting system in itself. It is however highly numerical, model-dependent, and relies on microeconomic
relations, such as ad-hoc reaction functions, that may be too simplistic. On the contrary, Statistical Field
Theory accounts for the transition between scales. Macroeconomic patterns do not emerge from the sole
dynamics of a large set of agents, but are grounded on particular behaviors and interactions structures.
Describing these structures in terms of Field Theory allows the study the emergence of a particular phase
at the macro scale, and in turn its impact at the individual level.

Econophysics is closer to our approach (for a review, see Chakraborti, Muni Toke, Patriarca and Abergel
(2011a) and (2011b) and references therein). It often considers the set of agents as a statistical system.
Moreover, Kleinert (2009) has already used path integrals to model the stock prices’ dynamics. However,
Econophysics does not fully apply the potentiality of Field Theory to economic systems and rather focuses on
empirical laws. But the absence of microfoundations casts some doubts on the robustness of these observed
empirical laws. Our approach, in contrast, keeps track of usual microeconomics concepts such as utility
functions, expectations, forward looking behaviors. It includes these behaviors in the analytical treatment
of Multi-Agents Systems by translating the main characteristics of a system of optimizing agents in terms
of a statistical system.

To sum up, the advantages of statistical field theories are threefold. They allow, at least approximatively,
to deal analytically with systems with large degrees of freedom, without reducing them to mere aggregates.
They reveal features otherwise hidden in an aggregate context. Actually, they allow switching from micro
to macro description, and vice-versa, and to interpret one scale in the light of the other. Moreover, and
relevantly for economic systems, these model may exhibit phase transition. Depending on the parameters of
the model, the system may experience structural changes in behaviors, at the individual and collective scale.
In that, they allow to consider the question of multiple equilibria in economics.

The first section presents a probabilistic formalism for a system with N identical economic agents,
interacting through mutual constraints. Section two introduces and discusses the associated field formalism
for a large number of agents. In section three, we present an application of this formalism to a business cycle
model. Section four concludes.

1 A probabilistic description of economic agents in interaction

This section presents a probabilistic formalism for a system with N identical economic agents in interaction.
Agents are described by intertemporal utility functions, but do not optimize these utilities. Instead, each
agent chooses for his action a path randomly distributed around the optimal path. The agent’s behavior can
be described as a weight that is an exponential of the intertemporal utility, that concentrates the probability
around the optimal path. This feature models some internal uncertainty as well as non-measurable shocks.
Gathering all agents, it yields a probabilistic description of the system in terms of a probabilistic weight. This
weight includes utility functions and internalizes forward-looking behaviors, such as intertemporal budget

3



constraint and interactions among agents. These interactions may for instance arise through constraints,
since revenue flows depend on other agents demand. The probabilist description then allows to compute the
transition functions of the system, and in turn compute the probability for a system to evolve from an initial
state to a final state within a given time span. They have the form of Euclidean path integrals.

For the sake of clarity, the description in terms of probabilistic representation is first explained discarding
constraints. This modelization, however suitable for simple models, would be a limitation for most economic
models in which constraints are relevant. So that these constraints will be considered in a second step.
In a third step, we will show that the interactions between agents are best described in terms of mutual
constraints. We end the section by discussing the transition functions associated with a system for a large
number of economic agents, and the transition to the field formalism.

1.1 Principles

To keep track of the agents’ main microeconomic features, several conditions must be satisfied. First, opti-
mization equations should, at least in some basic cases and in average, be recovered. Second, this probabilistic
description should account for the agents’ individual characteristics, such as constraints, interactions and
forward-looking behavior.

The probabilistic description presented here involves a probability density for the state of the system at
each period t. In a system composed of N agents, each defined by a vector of action Xi (t).

Notation 1 We denote X (t) the concatenation (X1 (t) , ..., XN (t)) of the action vectors.

Notation 2 We denote X = (X (0) , ..., X (T )) the concatenation of these vectors over the entire timespan,
where T is the time horizon.

We define a probability density P (X (t)) for the set of actions X (t) that describes the state of the system
at time t. Consider first the intertemporal utility of an agent i:

U
(i)
t =

∑
n>0

βnu
(i)
t+n (Xi (t+ n) , X (t+ n− 1))

where u
(i)
t+n is the instantaneous utility at time t + n. In the optimization setup, Xi (t+ n) is the agent i

control variable, the variables (Xj (t+ n− 1))j 6=i are the actions of the other agents, and (Xj (t+ n− 1))
are the actions of the set of all agents.

The above utility can encompass any quantity optimized, such as the production or utility functions of
consumer/producer models. It may also describe the interaction of several substructures within an individual
agent (see Gosselin Lotz Wambst 2018, and previous formulations in 2013, 2015), or the motion mechanisms
(decision and control) in the neurosciences literature.

We assume that agent i has no information about others (see Gosselin Lotz Wambst 2018). Their actions

are perceived as random shocks by agent i. Rather than optimizing U
(i)
t on Xi (t), we postulate that agent i

will choose an action Xi (t) and a plan, updated every period, Xi (t+ n), n > 0, for its future actions. This
plan follows a conditional probabilistic law proportional to:

exp
(
U

(i)
t

)
= exp

∑
n>0

βn

σ2
i

u
(i)
t+n (Xi (t+ n) , X (t+ n− 1))

 (1)

This is a probabilistic law for Xi (t) and the plan Xi (t+ n) when n > 0. It is conditional on the action
variables X (t+ n− 1), perceived as exogenous by agent i. The uncertainty about agent i behavior, or the
variability of agents actions, is denoted σ2

i .

Remark that, for a usual convex utility with a maximum, the closest the choices of the Xi (t+ n) to U
(i)
t

optimum, the higher the probability associated to Xi (t+ n). When σ2
i → 0, the agent’s action is optimal.

Our choice of utility is therefore coherent with a probability peaked around the optimization optimum. It is
thus different from the usual description in terms of optimal path of actions, but encompasses this approach
in average.
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This probabilistic description is simplified for non-strategic agents with no information about others. The
agent considers the variables Xj (t+ n) as random noises and integrate them out. The probability for Xi (t)
and Xi (t+ n), n > 0 will then be:∫

exp
(
U

(i)
t

)
exp

(
−
X2
j (s)

σ2
j

)∏
j 6=i

∏
s>t

dXj (s)

Here, exp
(
−X

2
j (s)

σ2
j

)
is the subjective weight attributed by i to the Xj (s). In general if no information is

available to agent i, we can assume that σ2
j → ∞ and exp

(
−X

2
j (s)

σ2
j

)
→ δ (Xj (s)), where δ (Xj (s)) is the

Dirac delta function, i.e. a function that is peaked on 0, and null everywhere else. As a consequence, as long
as no further information is available, other agents may be considered as random perturbations : agent i set
their future actions to 0, discarding them from his planning.

When there are no constraint and no inertia in u
(i)
t , i.e. when u

(i)
t solely depends on Xi (t) and

other agents’ previous actions (Xj (t− 1))j 6=i, periods are independent. Actually, action Xi (s) at times

s > t are independent of Xi (t). Consequently, exp
(
U

(i)
t

)
is a product of independent terms of the kind

exp
(
βnu

(i)
t+n (Xi (t+ n) , X (t+ n− 1))

)
. The Xi (s) can thus be integrated out, and the probability associ-

ated to the action Xi (t) is then:

∫ ∫ exp
(
U

(i)
t

)
exp

(
−
X2
j (s)

σ2
j

)∏
j 6=i

∏
s>t

dXj (s)

∏
s>t

dXi (s) ∝ exp

(
u
(i)
t (Xi (t) , X (t− 1))

σ2
i

)

or in term of conditional probabilities:

P (Xi (t) | (X (t− 1))) =

exp

(
u

(i)
t (Xi(t),X(t−1))

σ2
i

)
Ni

(2)

where the normalization factor is defined by:

Ni=
∫

exp
(
u
(i)
t (Xi (t) , X (t− 1))

)
dXi (t) (3)

From now on, the normalization factor will be skipped, and reintroduced if needed. Formula (2) shows
that each agent is described by his instantaneous utility. The lack of information induces a short sighted
behavior: in absence of any period overlap, i.e. without any constraint, the behavior of agent i is described

by a random distribution peaked around the optimum of u
(i)
t (Xi (t) , X (t− 1)) which models exactly the

optimal behavior of an agent influenced by individual random shocks.
As a consequence, gathering all N agents, the full system X (t), is described by a probability weight at

each time t: ∏
i

exp

(
u
(i)
t (Xi (t) , X (t− 1))

σ2
i

)
for any (Xk (t− 1)). Assuming that σ2

i = σ2 for each agent, a particular path for the whole system X,
is defined by the probabililty, up to the normalization factors:

P (X) =
∏
t

∏
i

exp

(
u
(i)
t (Xi (t) , X (t− 1))

σ2

)
(4)

1.2 Introducing constraints

Let us now consider the introduction of constraints, in an exact way for simple cases, or as first approximation
in the general case. To do so, we have two distinguish two types of constraints.

5



1.2.1 Instantaneous constraints

We define an instantaneous constraint as a dynamic identity between the control variables of the system.
A standard example is the dynamic for capital accumulation of a single producer/consumer:

Ki (t+ 1)− (1− δ)Ki (t) = Yi (t)− Ci (t) + εi (t) (5)

where Ct is the consumption, δ the depreciation rate, εi (t) a gaussian random shock centered around 0
and of variance η2, and Yt = F (Kt) the revenue. The function F may depend on other variables, such
as technology, that themselves depend on the environment provided by other agents. We can generalize
equation (5) for an arbitrary action variable vector Xi (t) :

Xi (t+ 1)−Xi (t)−H (Xi (t) , X (t− 1)) = εi (t)

for some function H. The inclusion of this constraint in our probabilistic description is straightforward.
If we assume that εi (t) is independent from any of the variables, the density of probability for the system
(2) is modified by the adjunction of a gaussian term:

P (Xi (t) | (X (t− 1))) = exp

(
u
(i)
t (Xi (t) , X (t− 1))

σ2

)
exp

(
− (Xi (t+ 1)−Xi (t)−H (Xi (t) , X (t− 1)))

2

η2

)
(6)

Summing over agents and periods yields a statistical weight for a path X of the system:

P (X) = exp

∑
i,t

u
(i)
t (Xi (t) , X (t− 1))

σ2

 exp

−∑
i,t

(Xi (t+ 1)−Xi (t)−H (Xi (t) , X (t− 1)))
2

η2

 (7)

In continuous time, an integral replaces the sum over t and formula (15) becomes:

P (X) = exp

(∑
i

∫
u
(i)
t (Xi (t) , X (t− 1))

σ2
dt

)
exp

(
− 1

η2

∑
i

∫ T

0

(
d

dt
Xi (t)−H (Xi (t))

)2

dt

)
(8)

1.2.2 Intertemporal constraints

We will first consider an economic agent optimizing a quadratic utility under some budget constraint. We will
then extend the result to N agents with quadratic utilities under linear arbitrary constraints. Finally, we
will consider the general case of arbitrary utility.

Consider the quadratic utility of an agent whose action vector Xi (t) is his sole consumption. His utility
reduces to:

u
(i)
t (Xi (t) , X (t− 1)) = u (Ci (t)) (9)

His current account intertemporal constraint is of the form:

Ci (t) = Bi (t) + Yi (t)−Bi (t+ 1) (10)

where Yi (t) is first considered as an exogenous random variable, such as revenue in standard optimization
models. The state variable Bi (t) represents the usual Treasury Bond. Both the interest rate r and the
discount factor β are discarded here for the sake of simplicity. They can be reintroduced when needed (see
Gosselin Lotz Wambst 2017). We do this explicitly for the interest rate in our example in section 3.

If we were to keep the state variable Bi (t) in our description, we could consider (10) as an instantaneous
constraint similar to (5). However, we will rather replace the state variable Bi (t) and describe the system in
terms of the usual control variable Ci (t). This is in line with the usual models with intertemporal constraint
such as: ∑

t>0

Yi (t)−
∑
t>0

Ci (t) = 0

The usual consumption smoothing is imposed through the Euler equation. However, in our formalism, both
these elements will appear in a probabilistic form.
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Successive periods are interconnected through the constraint. When Ci (t) is replaced by the state variable
Bi (t), the intertemporal probability weight (1) becomes:

exp

(
u (Ci (t)) +

∑
n>0

u (Ci (t+ n))

)
(11)

= exp

(
u (Bi (t) + Yi (t)−Bi (t+ 1)) +

∑
n>0

u (Bi (t+ n) + Yi (t+ n)−Bi (t+ n+ 1))

)
This measures the probability for a choice Ci (t) and Ci (t+ n), n = 1...T . Alternately it is the probability
for the state variable Bi to follow a path Bi (t+ n), n > 0 starting from B (t)i. The time horizon T represents
the expected remaining duration at time t of the interaction process’. It should depend decreasingly on t,
but, for the sake of simplicity, it is assumed to follow a random poisson process. As a consequence, the mean
expected duration will be a constant written T , irrespective of t. Integrating over the Bi (t+ n) with n > 2,
yields a transition probability between Bi (t) and Bi (t+ 1) written P (Bi (t) , Bi (t+ 1)), the probability to
reach Bi (t+ 1) given Bi (t). It is equal to:

P (Bi (t) , Bi (t+ 1)) =

∫ T∏
i=2

dBt+i exp

(
u (Bi (t) + Yi (t)− Ci (t+ 1)) +

∑
n>0

u (Bi (t+ n) + Yi (t+ n)− Ci (t+ n+ 1))

)
Computing P (Bi (t) , Bi (t+ 1)) rather than the transition function for Ci (t) does not change our approach. It

merely requires that it be applied to the state variable Bi (t) rather than to the control variable Ci (t). In this
case, due to the overlapping nature of state variables, the probability transition P (Bi (t) , Bi (t+ 1)) now measures
a probability involving two successive periods, so that the probability for the path Ci (t+ n), n > 0 has to be rebuilt
from the data P (Bi (t) , Bi (t+ 1)).

Consider a quadratic utility function of the form u (Ci (t)) = −α
(
Ci (t)− C̄

)2
with objective C̄ or, should it be

non quadratic, its second order approximation. Rescale it for the sake of simplicity as −α
(
Ci (t)− C̄

)2 → −C2
i (t).

The constant C̄ can be reintroduced at the end of the computation. We assume for now that σ2 = 1. The transition
probability between two consecutive state variables thus becomes:

P (Bi (t) , Bi (t+ 1)) =

∫ T∏
i=2

dBi (t+ n) exp

(
u (Ci (t)) +

∑
n>0

u (Ci (t+ n))

)

=

∫ T∏
i=2

dBi (t+ n) exp

(
−
(
Ci (t)− C̄

)2 −∑
i>0

(
Ci (t+ n)− C̄

)2)
The successive integrals can be performed using the budget constraint (10). We find:

P (Bi (t) , Bi (t+ 1)) = exp

(
−
(
Bi (t) + Yi (t)−Bi (t+ 1)− C̄

)2 − 1

T

(
Bi (t+ 1) +

∑
n>0

(
Yi (t+ n)− C̄

))2)
where the transversality condition Bi (t)→ 0 as t→ T has been imposed. Recall that the number of periods T is the
expected mean process duration. Appendix 1 shows how to recover the transition probability for Ci (t) by integrating
over Bi (t) and Bi (t+ 1), under the condition that the revenue Yi (t+ n) is centered on Ȳ with variance θ2. Defining
the centered variables:

Ĉi (t) = Ci (t)− Ȳ
and:

Ŷi (t) = Ci (t)− Ȳ
the statistical weight for the consumption path Ci becomes in first approximation for T large:

P
(
Ĉi (t)

)
= exp

− T∑
t=1

(
Ĉi (t)− Ĉi (t+ 1)

)2

−

(∑T
t=1 Ŷi (t)−

∑T
t=1 Ĉi (t)

)2

θ2

 (12)

Equation (12) modifies (4) when agents are facing some constraints.
We can generalize (12) for any system with a constraint similar to (10), by coming back to the notation Xi (t)

for a general action variable and by assuming that individual utilities have a quadratic approximation around some
reference value X0:

u
(i)
t (Xi (t) , X (t− 1)) ' Constant +

(
u

(i)
t

)′′
(X0)(Xi (t)−X0)2
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Assuming an intertemporal constraint of the form:∑
06t6T

Ŷi (t) =
∑

06t6T

Xi (t) (13)

for some exogenous flow variable ŶT+i, the individual weight for an individual path Xi becomes (after normalizing(
u

(i)
t

)′′
(X0) = −1, and reintroducing the variance σ2) :

P (Xi) = exp

− ∑
06t6T

(Xi (t)−Xi (t+ 1))2

σ2
−

(∑
06t6T Ŷi (t)−

∑
06t6T Xi (t)

)2

θ2

 (14)

This yields the global weight for a path X of the system when an intertemporal constraint is considered:

P (X) = exp

− ∑
i,06t6T

(Xi (t)−Xi (t+ 1))2

σ2
−

∑
i,06t6T

(∑
06t6T Ŷi (t)−

∑
06t6T Xi (t)

)2

θ2

 (15)

If we consider a continuous time, an integral replaces the sum over t and formula (15) becomes:

P (X) = exp

−∑
i

 1

σ2

∫ T

0

(
d

dt
Xi (t)

)2

dt+

(∫ T
0
dtŶi (t)−

∫ T
0
dtXi (t)

)2

θ2


 (16)

Equations (15) and (16) describe the statistical weight associated to a path for a system with intertemporal constraint.
Gosselin, Lotz and Wambst (2018) shows that non-quadratic corrections to the utility can be considered by adding
terms of the form V1 (Xi (t)) to the weights (15) and (16). In continuous time, this yields:

P (X) = exp

−∑
i

∫ T

0

(
1

σ2

∫ T

0

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt+

(∫ T
0
dtŶi (t)−

∫ T
0
dtXi (t)

)2

θ2


 (17)

Ultimately, we can directly generalize (17) when the revenue Ŷi (t) is itself a function of the variables of the system.
This will be the case in section 3, when considering a Business Cycle model. Assuming the form Ŷi (t) = F (Xi (t)),
yields:

P (X) = exp

−∑
i

∫ T

0

(
1

σ2

∫ T

0

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt+

(∫ T
0
dtF (Xi (t))−

∫ T
0
dtXi (t)

)2

θ2


 (18)

1.2.3 Interdependent constraints

The above computations were performed under the assumption that the constraint included some exogenous, i.e.
totally independent from other agents, variable Yi (t). However for a system of N agents, constraints are more likely
imposed on agents by the entire set of interacting agents. For example the variable Yi (t) in the constraint (10)
represented the agent’s revenue. In a context of N interacting agents, this variable depends on others’ activity. In our
simple model (9), it is on their consumption. In a system of consumer/producer, the others’ consumption generates
the flow of revenue Yi (t). In other word, agent i revenue Yi (t) depends on other agents’ consumptions Cj (t) - or
possibly Cj (t− 1) if we assume a lag between agents actions and their effect. More generally, for a system with a large
number of agents, the revenue Yi (t), may depend on endogenous variables that can still be considered as exogenous
in agent i′s perspective. Thus, our benchmark hypothesis in this section will be that agents are too numerous to be
manipulated by a single agent.

The previous procedures developed for the constraint of a single agent remain valid and can be generalized directly.
Again, we impose a constraint of the form (13) in continuous time:∫ T

0

Yi (t) dt =

∫ T

0

Xi (t) dt

for each agent. When the individual agent considers Yi (t) as exogenous, (16) applies. But, if Yi (t) depends endoge-
nously on other agents, (16) must be modified accordingly. Assume for example that Yi (t) =

∑
j α

i
jXj (t) for the

8



i-th agent. Appendix 1 shows that under some assumptions about θ2 and σ2, the last term in (16) for the i-th agent
can be replaced by:(∫

dtYi (t)−
∫
dtXi (t)

)2
θ2

=
1

θ2

∫ ∫
Xi (s)Xi (t) dsdt+

1

θ2

∑
i,j

∫ ∫
V2 (Xi (s) , Xj (t)) dsdt (19)

for some constant ν depending on the system, and with:

V2 (Xi (s) , Xj (t)) =

(∑
k

αkjα
k
i − 2αij

)
Xi (s)Xj (t) (20)

The term:
1

θ2

∫ ∫
Xi (s)Xi (t) dsdt (21)

depends only on the individual agent i. It is irrelevant in modeling the interactions between agents. Moreover,
(Gosselin, Lotz, Wambst 2017) shows that it can often be approximated by a term proportional to

∫
X2
i (t) dsdt. It

can thus be included in the contribution V1 (Xi (t)) of (17). As a result, equation (20) transcribes the constraints
in some non-local interactions between agents. Each agent’s constraint is shaped by the environment other agents
create. Equation (20) also accounts, when necessary, for some non-linear constraints V (Xi (s) , Xj (t)), where V is
an arbitrary function.

This discussion can be generalized straightforwardly to constraints involving up to k agents. In that case, any
interdependent intertemporal constraint, or any interaction between k agents is modeled by:∑

k>2

∑
i1,...,ik

∫ T

0

∫ T

0

Vk (Xi1 (s1) , ..., Xik (s1))

θ2
ds1...dsk (22)

The functions Vk depend on the particular interactions to model. Section 3 details an example involving technology
and capital. Gathering the results of (17), (8) and (22) leads to the global statistical weight for the set of agents in
the continuous time version, including both instantaneous constraint (8), individual intertemporal constraint (17),
and intertemporal constraint (22):

P (X) = exp (−A1 −A2) (23)

with:

A1 =
∑
i

∫ T

0

(
1

σ2

∫ T

0

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt+

1

η2

∑
i

∫ T

0

(
d

dt
Xi (t)−H (Xi (t))

)2

dt

A2 =
∑
k>2

∑
i1,...,ik

∫ T

0

∫ T

0

Vk (Xi1 (s1) , ..., Xik (s1))

θ2
ds1...dsk

Contribution A1 is the individual part of the statistical weight. It depends on individual agents. It includes a utility
with possible individual intertemporal constraint and instantaneous constraint. For the intertemporal part, we have
chosen (17). Contribution A2 models the agents’ interactions through a potential depending on several agents.

Remark that the term: (∫ T
0
dsŶi (s)−

∫ T
0
dsXi (s)

)2

θ2

present in (17), has desappeared. It has been decomposed into an individual part, included in V1

(
X

(i)
s

)
, and an

interaction part, included in A2.
Finally, a slight generalization of (23) will later prove useful. Assuming the N agents have different lifespan T1,...,

T1, we define PT1,...,T1 (X) the probability for a path with variable individual lifespan by:

PT1,...,T1 (X) = exp
(
−A′1 −A′2

)
(24)

with:

A′1 =
∑
i

∫ Ti

0

(
1

σ2

∫ Ti

0

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt+

1

η2

∑
i

∫ Ti

0

(
d

dt
Xi (t)−H (Xi (t))

)2

dt

A′2 =
∑
k>2

∑
i1,...,ik

∫ Ti

0

∫ Tj

0

Vk (Xi1 (s1) , ..., Xik (s1))

θ2
ds1...dsk

9



1.3 Probability transition functions

Our formalism replaces the optimization problem with a probabilistic approach. It thus allows to compute the
probability transition functions (or transition functions in short) for the system between an initial and a final state.
To do so, we first define the paths with initial state X and final state X as the set of paths X such that X(0) = X
and X(T ) = X. In formula (23), P (X) is the probability density for a given path X. We then define the probability
of transition between an initial state X, and a final state X of the system, as a sum of (23) over all paths. This
probability is computed as a multiple integral:

PT
(
X,X

)
=

∫
...

∫
P (X)

∏
i

∏
t

dXi (t) (25)

The integrand
∏
i

∏
t dXi (t) can be understood as the sum over the paths X (t) between X = X (0) and X = X (T ).

A compact notation for this Path integral is
∏
i

∏
t dXi (t) ≡

∏
iDXi (see Peskin, Schroeder, 1995). Similarly, using

(24) we can define:

PT1,...,T1

(
X,X

)
=

∫
...

∫
PT1,...,T1 (X)

∏
i

∏
t

dXi (t) (26)

for agents with variable lifespan.
However, the integrals in (25) and (26) are difficult to compute, particularly when the number of agents is large.

Moreover, the inclusion of non-local terms in (23) is another source of complexity. Techniques such as perturbation
expansions of the potential term in terms of Feynman graphs exist and may be used in some case. Nevertheless, for
a large number of agents another method exists, based on Statistical Field Theory. This formalism will consider a
set of an infinite number of agents and compute (25) for any number N of agents among this set. More precisely, we
will rather compute the Laplace transform of (26), defined by:

Gα
(
X,X

)
=

∫ T

0

exp (−α (T1 + ...TN ))PT1,...,T1

(
X,X

)
dT1...dTN (27)

Once (27) computed, the function PT
(
X,X

)
can be recovered, either analytically, through an inverse Laplace trans-

form, either numerically. However, the function Gα
(
X,X

)
has an interest in itself. It represents a transition

probability for a variable lifespan between agents: the timespans Ti are assumed to be a Poisson random process with
mean 1/α. As a consequence, Gα

(
X,X

)
is the transition of probability for a system of agents with variable lifespan

T .

2 A field theoretic formulation for interactions between large num-
ber agents

When the present formalism is applied to a large number of agents, transition functions can be computed as the so-
called correlation functions of a field theory (see Kleinert 1989) whose action is directly derived from individual agents’
statistical weight defined in section 1. Starting from the expression (23) defining P (X) for a system, a functional
of an abstract quantity, or ”field”, is built, that will both keep the collective aspects of the system, and allow to
compute the transition functions of individual agents (27) defined in section 1. Field theory allows to inspect the
phases of the system, phases that describe the background in which individual agents evolve. Given the parameters
of the system, several phases may exist: the system may experience phase transition, switching from one type of
dynamic to another.

We can now explain how to associate a field representation to (23). The idea is the following. For a large number
of agents, the system described by (23), involves a large number of variables X (t) that are dificult to handle. We
consider the space H of complex functions defined on the space of a single agent’s actions. The space H describes
the collective behavior of the system. Each function Ψ of H encodes a particular state of the system. Then, to
each function Ψ of H, we associate a statistical weight, i.e. a probability describing the state encoded in Ψ. This
probability is written exp (−S (Ψ)), where S (Ψ) is a functional, i.e. a function of the function Ψ. The form of S (Ψ)
is derived directly from the form of (23).

This description does not represent an aggregation to a single representative agents. It keeps the information
about individual agents among the whole system, and will allow to compute the transition functions for several agents
among the system. Moreover, it makes possible to find some collective features of the system as a whole.

The method presented here is an adaptation of tools in statistical field theory described in (Kleinert 1989). It
relies on building a field action, starting from the probabilistic description (23) in the following successive steps.

10



Replacing the action variable by a field Rather than describing agents by a set of action variables X (t),
we consider a (complex valued) function Ψ (x) where the vector x belongs to the same space as the Xi (t). For
agents described by their consumption Ci (t) and a stock of individual capital Ki (t), the field will be a function
Ψ (x) = Ψ (c, k).

This function is an abstract encoding of the distribution of consumption and capital among the whole set of
agents. It is not a distribution of probability for these values. Only a functional S (Ψ) of this field will give some
information about this distribution.

Translating the individual part of P (X) in terms of field The individual part A1 of (23) is the weight
depending only on individual agents, excluding their mutual interactions. Recall that:

A1 =
∑
i

∫ T

0

(
1

σ2

∫ T

0

(
d

ds
Xi (s)

)2

+ V1

(
X(i)
s

))
ds+

1

η2

∑
i

∫ T

0

(
d

dt
Xi (t)−H (Xi (t))

)2

dt

Under some conditions on σ2 (see Gosselin, Lotz, Wambst 2017), we can associate to A1 the following functional:

S0 (Ψ) =

∫ (
Ψ† (x)

(
−σ2∇2 + V1 (x) + α

)
Ψ (x)

)
dx−

∑
i

∫ T

0

Ψ† (x)
(
η2∇2 +∇.H (x)

)
Ψ (x)

where α is the parameter arising in the Laplace transform described in the first section, formula (27), and where Ψ† (x)
denotes the complex conjugate of Ψ (x). The operator ∇ is the gradient operator, a vector whose i-th coordinate is

the first derivative ∂
∂xi

: ∇ =
(

∂
∂xi

)
. The operator ∇2 denotes the Laplacian:

∇2 =
∑
i

∂2

∂x2
i

where the sum runs over the coordinates xi of the vector x. Applying this to our previous example, where Ψ (x) =

Ψ (c, k), we get ∇2 = ∂2

∂c2
+ ∂2

∂k2 .

Adding the interaction terms of P (X) The last part of P (X) describes specifically the interaction between
the different agents. We will call it A2.

A2 =
∑
k>2

∑
i1,...,ik

∫ T

0

∫ T

0

Vk
(
X

(i1)
s1 , ..., X

(ik)
sk

)
θ2

ds1...dsk

In terms of field, it is translated into a functional:

SI (Ψ) =
1

θ2

∑
k>2

∫
Ψ (x1) ...Ψ (xk)Vk (x1...xk) Ψ† (x1) ...Ψ† (xk) dx1...dxk

Adding SI (Ψ) to S0 (Ψ) yields the field action:

S (Ψ) = S0 (Ψ) +

∫ (
Ψ† (x) Ψ† (y)(V2 (x, y)) Ψ (x) Ψ (y)

)
dxdy

=

∫ (
Ψ† (x)

(
−σ2∇2 + V1 (x) + α

)
Ψ (x)

)
dx−

∑
i

∫ T

0

Ψ† (x)
(
η2∇2 +∇.H (x)

)
Ψ (x)

+
1

θ2

∑
k>2

∑
k>2

∫
Ψ (x1) ...Ψ (xk)Vk (x1...xk) Ψ† (x1) ...Ψ† (xk) dx1...dxk

Adding source fields to the action The above functional S (Ψ) gathers all the necessary information. But to
compute the transition functions associated to the system described by (23), it has to be supplemented with so-called
source fields.

Consider a complex function J (x) in H, and add to S (Ψ) the quadratic terms:∫ (
J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

11



The system can be described by an action with source:

S (Ψ, J (x)) =

∫ (
Ψ† (x)

(
−σ2∇2 + V1 (x) + α

)
Ψ (x)

)
dx−

∑
i

∫ T

0

Ψ† (x)
(
η2∇2 +∇.H (x)

)
Ψ (x)

+
1

θ2

∑
k>2

∑
i1,...ik

Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...dxik

+

∫ (
J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

The successive derivatives of S (Ψ, J (x)) with respect to J (x) and J† (x) will allow to recover the transition functions.

Computing the transition functions via path integrals over Ψ (x) Once the action S (Ψ, J (x)) derived
from (23), we can compute the transition functions defined in (27). To do so, we first need to introduce two notations.

Notation 3 We denote X [k](t) the vector (X1(t), ..., Xk(t)) of k action vectors. Agents being identical, any set of k
agents among the entire set of N agents is equivalent.

Notation 4 We denote X [k] and X
[k]

any initial and final conditions for this set of agents.

Then, a result of statistical field theory (see Kleinert 1989) is the following:

The transition probability Gα
(
X [k], X

[k]
)

defined in (27) for k agents between the initial state X [k] and the final

state X
[k]

for the system defined by the probability weight (23) is:

Gα
(
X [k], X

[k]
)

(28)

=

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)
exp

(∫ (
Ψ† (x)

(
−σ2∇2 + V1 (x) + α

)
Ψ (x)

)
dx

−
∑
i

∫ T

0

Ψ† (x)
(
η2∇2 +∇.H (x)

)
Ψ (x)

+
1

θ2

∑
k>2

∑
i1,...ik

Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) + J (x) Ψ† (x) + J† (x) Ψ (x)

DΨDΨ†


J=J†=0

As before, the notation DΨDΨ† denotes an integration over the space of functions Ψ (x) and Ψ† (x), that is integral
in an infinite dimensional space. Actually, these integrals are formal, and solely computed in simple cases. The form
of S (Ψ) is often sufficient to derive good qualitative insights about the results. In terms of field theory, formula (28)
means that the transition functions are the correlation functions of the field theory with action S (Ψ).

As announced, the formulation (28) shows how the transition of the agents, i.e. their dynamical and stochastic
properties, take place in a surrounding. We do not compute the dynamic of the whole system. We rather derive
agent’s behaviors from the global properties of a substratum, i.e. the global action for the field Ψ (x).

Remark that this change in formulation has to be related to the introduction of a variable number k of agents in
(28). In the previous section, the system was described by a fixed number of agents. Here, the focus being on the
environment, we can compute the transition functions for an arbitrary number of agents in this environment.

2.1 Non trivial vacuum, phase transition and Green function

In practice, it is often not necessary to compute 2k derivatives in (28) to compute the k agents transition functions.

It is generally enough to know the transition for one agent Gα
(
X [1], X

[1]
)

. From there, the transition functions

Gα
(
X [k], X

[k]
)

for several agents can be deduced by techniques such as Feynman graphs (see article complet for a

detailed treatment). The one agent transition functions are themselves computed through graph expansion of the
interaction term SI (Ψ). However, some simplifications may arise and the graph expansion can be avoided in first
approximation.
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We proceed in the following way. We first look for a field minimizing the action S (Ψ), that is a field Ψ0 solution
of δ

δΨ
S (Ψ) = 0. If such a non null solution does exist, the system is said to have a non-trivial vacuum for S (Ψ0).

Then, let Ψ = Ψ0 + δΨ and expand S (Ψ) to the second order in δΨ. That is:

S (Ψ) ' S (Ψ0) +

∫
δΨ† (x)

(
−σ2∇2 + V1 (x) + α

)
δΨ (x) dx

+

∫
δΨ† (x)V (Ψ0, x, y) δΨ (y) dxdy

with:

V (Ψ0, x) =
σ2

θ2

∑
k>2

∑
l1,l2

∫  ∏
xi,i 6=l1

Ψ0 (xi)

Vk (xi1 ...xik )

 ∏
xi,i 6=l2

Ψ† (xi)

 δ (x− xl1) δ (y − xl2) dx1...dxk

and δ (x− xl1) is the Dirac function. It is then a classical computation to show that in first approximation the one
agent transition function is determined by the quadratic part in δΨ and satisfies the differential equation:(

−σ2∇2 + α+ V1 (x) + V (Ψ0, x, y)
)
Gα (x, y) = δ (x− y) (29)

in that case, the transition function describing the system can be computed at least approximatively numerically. A
consequence of this set up is the notion of phase transition. For some values of the parameters, the only vacuum of
the theory may be Ψ0 = 0. In that case, V (Ψ0, x, y) = 0, so that the transition function is in first approximation
given by the solution of: (

−σ2∇2 + α+ V1 (x)
)
Gα (x, y) = δ (x− y) (30)

On the other hand, if for another range of parameters Ψ0 6= 0, then the transition function is computed by (29) and
we say that the system experiences a phase transition. The qualitative properties of the system in the phase Ψ0 6= 0
differs from those in the phase Ψ0 = 0. Probabilities of transition and average values of quantities may differ from
one phase to another.

3 Application: revisiting a standard business cycle model

In this section, we present an application of our formalism to a standard Business Cycle model. The usual assumptions
of the standard model are maintained (see Romer 1996), but agents now interact through technology. In such a model,
we show that a non-trivial vacuum may appear. For some values of the parameters, the equilibrium may experience
a discontinuous shift. The different phases of the system induce different individual behaviors. In the following, we
will present the model, compute the effect of the agents’ interactions on individual dynamics for each phase, and
provide an interpretation of the results.

3.1 Description

3.1.1 The model

We consider a system with a large number of identical consumer/producer agents. Each agent i consumes at time t a
quantity Ci (t), has a stock of capital Ki (t) and a technology Ai (t). The saving variable Bi (t) is equal to the stock
of capital Ki (t) used in the production function, as usually assumed in standard Business Cycle models.

On the consumer side, we consider a utility function of the standard form (Romer 1996, Obstfeld Rogoff 1996):

u (Ci (t)) =
Ci (t)1−θ − 1

1− θ

where the coefficient θ measures the relative risk aversion, i.e. the inverse of the elasticity of substitution between
consumption at different dates. A quadratic approximation of u (Ci (t)) can be found by an expansion around some
minimal value Ĉ for the consumption:

u (Ci (t)) =
(
Ci (t)− Ĉ

)
− θ

2

(
Ci (t)− Ĉ

)2

(31)

We can thus rewrite:

u (Ci (t)) =
(
Ci (t)− Ĉ

)
− θ

2

(
Ci (t)− Ĉ

)2

= −θ
2

(
Ci (t)− C̃

)2

+
1

2θ
(32)
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with C̃ = Ĉ + 1
θ
. The constant C̃. We assume C̃ � 1. As usual, this constant ensures decreasing marginal utility.

The quadratic approximation (32) will be the utility used in the sequel.
As consumers, agents each optimize their intertemporal utility function. Written in continuous time:

U (C) =

∫ T

0

u (Ci (t)) dt

Since the discount factor β does not alter this section main arguments, we set it to 1. Under the usual budget
constraint:

Ci (t) = ri (t)Bi (t) + Yi (t)− d

dt
Bi (t) (33)

where ri (t) is the i-th agent or sector interest rate. In continuous time, integrating (33) over the entire periods yields
the overall budget constraint : ∫ T

0

(Yi (t)− Ci (t)) exp

(
−
∫
ri (t) dt

)
dt = 0

On the production side, assuming some uncertainty in the capital accumulation process yields a dynamic equation
for capital:

K̇i (t) = Yi (t)− Ci (t)− δ (Ki (t)) + ε (t) (34)

where ε (t) is a random term of variance ν2 and δ (Ki (t)) describes the depreciation of Ki (t).
We endogenize the production Yi (t) and treat it as a function of capital: Yi (t) = Ai (t)Fi (Ki (t)). From this

relation we can deduce the form of the interest rate faced by each sector:

ri (t) = Ai (t)F ′i (Ki (t)) + rc

That includes an exogenous (or minimal) interest rate rc, plus some individual determinants depending on the capital
depreciation, rates of return, environment and technology of each sector. That is, ri is defined by the marginal
productivity in the sector plus some collective effect rc. Remark that usually, rc = −δ, but we assume that other
determinants allow to consider rc as an independent variable. It is always possible to set rc = −δ if needed.

To complete the model, the dynamics of technology should be modeled. We assume that Ai (t) is a stochatic
process with specific fetures. Its dynamics includes an intrinsic part that fluctuates around a technology growth path.
Besides, we assume that technology and capital stock influence each other. Part of the technology random process
will thus describe technology’s interaction with capital. Since the dynamics of Ai (t) is probabilistic, we will provide
its precise description in the next section.

3.1.2 Probabilistic description

Let us now apply the method presented in section 1. Three variables describe our model. The variables K and
C are standard control variables. As such, we must give them a statistical weight describing their dynamics. The
third variable, technology, does not qualify as a control variable. It could be treated as an exogenous parameter.
However since our formalism aims at studying interactions between variables, and explore the consequences of these
interactions, we will treat technology as a variable of the system interacting with capital. Consequently, we will give it
a statistical weight. So that the probability describing the system can be decomposed into several statistical weights,
respectively due to consumption, capital and technology.

Statistical weight of consumption The first weight corresponds to the consumption behavior of agents with
utility (31) under an intertemporal budget constraint (33). Appendix 3 shows that the exogenous interest rate in the
constraint modifies the statistical weight (16) associated to consumption under constraint in:

exp

(
−
∑
t

1

$2

(
Ci (t)− C̄ −

(
Ci (t+ 1)− C̄

)
(1 + r)

)2

+
∑
t

C0

)
exp

−
(∫ T

0
(Yi (t)− Ci (t)) exp

(
−
∫
ri (t) dt

)
dt
)2

θ2


where $2 = 2σ2

θ
measures the uncertainty in consumption behavior among agents. For a $2 � 1, the weight is peaked

around the usual optimal Euler equation in continuous time. The parameter σ2 is the uncertainty in consumption
behavior used in (16). Remark that C0 ≡ 1

2θσ2 , and that the sum
∑
t C0 = TC0 measures the agents’ relative risk

aversion, cumulated over the entire timespan, to change consumption.
Appendix 5 shows that the part due to the overall intertemporal constraint:

−

(∫ T
0

(Yi (t)− Ci (t)) exp
(
−
∫
ri (t) dt

)
dt
)2

θ2
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can be neglected in first approximation. In continuous time, this leaves us with:

exp

− ∫ dt

(
Ċi (t)− r

(
Ci (t)− C̄

))2

$2
+ C0

∫
dt

 (35)

Statistical weight of capital The second weight models the capital dynamics. Equation (34) shows that
εi (t) = K̇i (t)− (Yi (t)− Ci (t)− δ (Ki (t))) is a gaussian variable with variance ν2. The associated statistical weight
is thus gaussian and writes:

exp

− ∫ dt

(
K̇i (t)− (AFi (Ki (t))− Ci (t)− δ (Ki (t)))

)2

ν2

 (36)

Since εi (t) is independent from consumption, this weight will be multiplied by (35).

Statistical weight of technology The third weight accounts for technology. Recall that this is a particular
variable in our setting: its dynamics can be seen as intrinsic, or resulting from capital interaction. This reflects on
its weight.

Statistical weight of intrinsic technology We first consider the contribution inherent to the technology
itself. We denote 〈A〉 the system’s average technology, to be computed later, but phase dependent. Let us also
denote A0 an exogenous level of technology and Ā is the optimal technology level for the agent in the system, with
Ā = κ 〈A〉+A0, and κ < 1. We choose the technology contribution to be of the following form:

exp

−∫ dt


(
Ȧi (t)− gAi (t)

)2

λ2
+
(
Ai (t)− Ā

)2
 (37)

The first term
(Ȧt−gAt)

2

λ2 models the agent’s technology endowment as fluctuating around a technology growth path

g. Actually, the distribution is centered around the paths solutions of
(
Ȧi (t)− gAi (t)

)
= 0. In the sequel, we will

set g = 0 to simplify, so that Ai (t) can be seen as a detrended variable, but the growth factor g can be reintroduced
if needed. We consider λ2 � 1, which means that the level of technology can adapt relatively quickly to Ā. The
second term,

(
Ai (t)− Ā

)2
, is the difference between the agent’s technology and agents’ potential level of technology

in the system. So that, in the absence any other forces, the agent should be driven towards this optimal level of
technology. As a consequence (37) models an individual technology that is both driven by individual factors, and a
collective level of technology.

Statistical weight of capital-technology interaction We have shown in section 1 how interactions
can be modeled by adding a potential involving several agents (see (22)). Here, we model the impact of capital on
technology by introducing an additional term in (37) such as:

exp

(
−γ
∫ ∫

tj<ti

∑
j

Ai (ti)H (Ki (ti) ,Kj (tj))Kj (tj) dtjdti

)
(38)

This term describes the value added accumulated in the different sectors by capital stocks. The function H is
any positive functions and represents the impact of sector i on sector j. We assume reciprocal interactions and
assume that H is symmetric: H (Ki (ti) ,Kj (tj)) = H (Kj (tj) ,Ki (t)). The constant γ measures the magnitude of
these interactions. To check that (38) represents the impact of capital stock on technology, notice that the agent’s
technology Ai (ti) is multiplied by a weighted sum of other agents’ past capital stocks. This weight thus models the
interaction between technology and the global capital stock.

This interaction weight would however be incomplete, since the various sectors’ technology may also, in turn, ac-
celerate the dynamics of Ki (t). Considering the interaction between capital and technology is reciprocal is equivalent
to adding the term:

exp

(
−γ
∫ ∫

tj<ti

∑
j

Ai (ti)H (Ki (ti) ,Kj (tj))Kj (tj) dtidtj

)
(39)
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Here, inverting tj < ti accounts for the reversal of roles: it is the past technology that impacts capital stock.
Consequently, the statistical weight for technology and its interaction with capital stock is:

exp

− ∫ dt


(
Ȧi (t)− gAi (t)

)2

λ2
+
(
Ai (t)− Ā

)2 (40)

−γ
∫ ∫ ∑

j

Ai (ti)H (Ki (ti) ,Kj (tj))Kj (tj) dtjdti

)

The second term of (40) can be better understood if we note that it is an approximation of the quadratic term for
|γ| � 1:

+
γ√
|γ|

∫ ∑
i

(
Ai (ti)−

√
|γ|
2

∫ ∑
j

H (Ki (ti) ,Kj (tj))Kj (tj) dtj

)2

dti (41)

Actually, the expansion of (40) yields the second term of (40), plus a quadratic term in Ai (ti) and a quadratic term

in Kj (tj). The quadratic term in Kj (tj) is of magnitude
(√
|γ|
)3

and can be neglected. The quadratic term in

Ai (ti) is of magnitude
√
|γ|A2

i (ti) which is negligible with respect to
(
Ai (t)− Ā

)2
.

Equation (41) shows for γ < 0, the interaction is attractive: the higher capital stock, the higher the technology.
Interactions between capital and technology increase the likelihood for paths satisfying:

Ai (ti)−
√
|γ|
2

∫ ∑
j

H (Ki (ti) ,Kj (tj))Kj (tj) dtj = 0

On the contrary, for γ > 0 the interaction is repulsive: interactions between capital and technology increase the
likelihood of paths satisfying:

Ai (ti)−
√
|γ|
2

∫ ∑
j

H (Ki (ti) ,Kj (tj))Kj (tj) dtj →∞

Depending on society’s stock of capital, we can define a certain threshold Ã of required technology:

Ã =

√
|γ|
2

∫ ∑
j

H (Ki (ti) ,Kj (tj))Kj (tj) dtj

Agents with technology endowment higher than this threshold have an advantage and are thus driven on a technology
growth path. Agents below this threshold Ã will be evicted. We will study both cases γ < 0 and γ > 0 later on.

Overall statistical weight We can now gather the three contributions (35) (36) and (40). The overall statistical
weight writes:

exp

−∫ dt


(
Ċi (t) + r

(
Ci (t)− C̄

))2

$2

+ C0

∫
dt (42)

−
∑
i

∫
dt


(
K̇i (t)− (Ai (t)Fi (Ki (t))− Ci (t)− δ (Ki (t)))

)2

+ ς2C2
i (t)

ν2




× exp

−∑
i

∫
dti


(
Ȧi (ti)

)2

λ2
+
(
Ai (ti)− Ā

)2− γ ∫ ∫ ∑
i,j

Aj (t)H (Kj (tj) ,Ki (ti))Ki (ti) dtidtj


3.1.3 Field theoretic description

Now that the model has been described in terms of probabilities, we can transcribe it in terms of field, and apply the
method presented in section 2. We introduce a field Ψ (K,C,A) depending on the relevant variables of the system,
consumption, capital and technology. Appendix 6 presents the field theoretic formulation of the system given the
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above assumptions. Choosing the usual linear depreciation function δ (K) = δK and a ”distance function” of the
form H (K2,K1) = 1 yields the field formulation of the system:

S (Ψ) =

∫
Ψ† (K,C,A)OΨ (K,C,A) (43)

+
γ

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2)(A2K1 +A1K2) Ψ (K1, C1, A1) Ψ (K2, C2, A2)

where the second order differential operator O is defined by:

O = −$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2

+
(
A− Ā

)2 − 2 (C −AF (K) + δK)
∂

∂K
+ 2

(
AF ′ (K) + rc

)(
C − C̄

) ∂

∂C
+ ς2

(
C − C̄

)2
+
(
α+ 2AF ′ (K) + (rc − δ)− C0

)
The quadratic part of the action S (Ψ), namely

∫
Ψ† (K,C,A)OΨ (K,C,A), describes the individual behavior of the

agents. The quartic part of the action represents the interaction between technology and capital stocks among agents.

3.2 Results

We have described the model in terms of Field Theory. We can now search for non-trivial phases in the system, and
study their properties. These emerging phases will then allow us to compute the transition functions first without,
then with interactions.

3.2.1 Phases of the system

Once the field action S (Ψ) found, the minima that define the various phases of the system can be computed. These
phases correspond to the system different economic global equilibria. The trivial phase, i.e. Ψ1 (K,C,A) = 0, is an
analogous to a system linearized around its equilibrium. On the contrary, non-trivial phases reveal the emergence of
other equilibria. In each of these phases, the variables’ average values and the agents’ transition probability functions
can be computed and studied.

The inspection of the non-trivial phases associated to the field action (43) of our model and the computation of
the variables’ average values in each phase are performed in Appendix 6. The production function, assumed to be
Cobb Douglas, F (K) = AKε with ε < 1, can be approximated by a Taylor expansion above a minimal stock of
capital K̄:

AKε ' AK̄ε

(
1 + ε

(
K − K̄
K̄

)
− ε (1− ε)

2

(
K − K̄
K̄

)2
)

The results show that a non-trivial minimum Ψ1 (K,C,A) for S (Ψ) exists, provided some conditions on the parameters
are fulfilled. The minimum Ψ1 (K,C,A) is a product of several gaussian functions in the variables K,C,A whose
precise form is not necessary to the discussion (see Appendix 6 for a details).

This non-trivial minimum of S (Ψ) exists when:

γ > 0 (44)

A0 >
(

1 +
√

2
)
C̄

λ > > 1

and:

1� A0ε

(1− κ) K̄1−ε − δ > 0 (45)

Given that ε < 1, these conditions are jointly satisfied for A0 and K̄ relatively large, and when the return of capital
exceeds the depreciation value (equation (45)). An additional condition on the relative risk aversion C0 exists (see
Appendix 6 for details). Qualitatively, for an intermediate range of values for C0, the non-trivial phase is possible
and stable. We give below some interpretation for these conditions.

The equilibrium values of the variables in both phases and the global patterns of the system are computed using
quadratic expansions of S (Ψ) around the minima Ψ1 (K,C,A) = 0 and Ψ1 (K,C,A) 6= 0 respectively. This expansion
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in turn allows to find the average values for K, C and A in each phase (see appendix 6). For Ψ1 (K,C,A) = 0 and
neglecting the interaction terms, the average values for the relevant variables are:

〈A〉0 = Ā =
A0

(1− κ)

〈C〉0 = C̄ +

√
2

π
$

〈K〉0 =

A0
1−κ K̄

ε (1− ε)− x
Y

with:

Y = δ − A0

(1− κ)
εK̄ε−1

K′1 = − 2

π

∣∣∣∣∣C̄ +

√
2

π
$ −AK̄ε (1− ε)

∣∣∣∣∣−
√

2
∣∣δ − Γ3εK̄ε−1

∣∣
√
π

ν

x = C̄ +

√
2

π
$ −K′1

For the phase with Ψ1 (K,C,A) 6= 0, one finds:

〈A〉1 =
A0

(1− κ)
− 1

2

KεA0 (1− ε)−
(
C̄ +

√
2
π
$ −K′1

)
Y (1− κ)

Y 2 (1− κ)3 γη (46)

〈C〉1 = C̄ +

√
2

π
$ −

$2
(
A0

1−χ

)
2
(
ς2$2 + (AF ′ (K) + rc)

2) ∣∣δ − Γ3εK̄ε−1
∣∣γη

〈K〉1 =

A0
1−κ K̄

ε (1− ε)− x
Y

− 1

2
Kε (KεA0 (1− ε)− Y (1− κ)x) (εx−Kδ (1− ε))

Y 4K (1− κ)3 γη (47)

− K̄
ε (1− ε)(1− Y )K′1

2Y 3
γη −

ν2 A0
1−χ

2Y 2
γη −

$2
(
A0

1−χ

)
2
(
ς2$2 + (AF ′ (K) + rc)

2)Y 2
γη

The parameter ηγ depends on the parameters of the system and can be estimated as:

ηγ � 1

In the non-trivial phase, both, the average level of consumption 〈C〉1 and the average level of technology 〈A〉1 are
lower than in the trivial phase: 〈C〉1 < 〈C〉0, 〈A〉1 < 〈A〉0. Indeed, the non-trivial phase emerges under high relative
risk aversion, and hence low level of consumptions. The effect on average capital stock 〈K〉1 is mitigated: since the
technology level has decreased, a higher level of capital stock may be required to reach average levels of consumption.
Equation (47) shows that when capital or/and consumption volatility, ν and $ respectively, are high, capital stock is
lower in the non-trivial phase. Uncertainty hinders accumulation. But when these volatilities are low, capital stock
is higher than in the trivial phase.

One can compute the average production level in both phases. This is done in Appendix 6. It appears, that in
our range of approximations:

〈Y 〉1 < 〈Y 〉0
Let us now discuss the conditions (44) and (45) in which this non trivial phase should appear. When γ < 0, capital

and technology are mutually enhanced. This prevents the non trivial phase to appear. A high level of consumption
and capital can be reached. But when γ > 0, the interaction between capital and technology is selective. In such a
setting, the initial endowment in technology is crucial. Agents endowed with a level of technology above a certain
threshold are favored. On the contrary, for agents poorly endowed, this level acts as a ceiling. In average, our results
show that overall, the society experiences lower technology, lower production and lower consumption.

Finally, the non trivial phase corresponds to a large minimal technology and intermediate values of C0. Actually,
risk aversion has to be large enough to reduce capital accumulation. Still, this reduced capital accumulation must be
sufficient to reach optimal consumption. To do so, technology must be relatively high, and compensate for a lower
stock of capital. This equilibrium must also be sustainable. Thus, a large C0 is outside the limits of our model.
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3.2.2 Transition functions without interaction

In the above, we had first translated the classical business model in terms of probabilistic description, then translated
it into statistical field. Now that the various phases of the system of the statistical field have been described, we
can turn back to and examine the transition functions of the system. In other terms, having found the collective
levels, we can now turn back to the individual level, that may include several agents and their interactions. The
transition functions will now allow us to describe the individual agents’ dynamics in each phase. We will then deduce
the equilibrium values of these dynamics, as well as the dynamic equations of their average paths.

Transition functions In the following, we will denote the phase ι = 0 the phase with minimum Ψ1 = 0, the
trivial phase. The phase ι = 1 will correspond to Ψ1 6= 0, the non-trivial phase.

Given a phase ι of the system and neglecting the expression last term, i.e. the quartic interaction term in (43),
the probability of transition for an agent from a state (C′,K′, A′) to a state (C,K,A) during a timespan t, is equal
to:

G
(
C,K,A,C′,K′, A′, t

)
=

1√
(2π)3 Ω2$2

λ2 t3
exp

(
−
((
C − C̄ι

)
−
(
C′ − C̄ι

)
(1 + βt)

)2
2$2t

)
(48)

× exp

−
((
K − K̄ + δK̄+C̄ι

α

)
−
((
K′ − K̄ + δK̄+C̄ι

α

)
(1− αt)−

(
C′ − C̄ι

)
t+A′K̄εt

))2

2Ω2t


× exp

−λ2 (A−A′)2

2t
−

(
A+A′

2
− Āi

)2

2
t−mιt


where (C′,K′, A′) is the initial state of the system and (C,K,A) the final state for a process of duration t.

Parameters Two sorts of parameters appear in equation (48). Some parameters, such as Ω2, α and β, do not
depend on the phase of the system. They are:

Ω2 =
$2

λ2

(
ν2 +

2K̄2ε

λ2α2
+

3$2

2 (β2 − α2)

)

α = δ − A+A′

2
F ′
(
K +K′

2

)
(49)

β =
A+A′

2
F ′
(
K +K′

2

)
+ rc − δ

The parameter Ω2 is a global variance of the system which mixes the variances of the variables C, K and A. This
parameter is independent from the phase, since the phases do not affect volatilities but average values in this particular
model. For rc = δ, the parameter β is the average rate of return of capital for a process starting from (C′,K′, A′)
and reaching (C,K,A). Finally, the parameter α measures the spread between marginal productivity and capital
depreciation. These two variables do not depend on the phase, but merely on the producer capital and technology
levels.

Other parameters in equation (48) are phase-dependent. These parameters are the average values of technology
and capital in a given phase. They are, for the first phase:

Ā0 = 〈A〉0 =
A0

1− χ
C̄0 = 〈C〉0 = C̄ + 2$

m0 = 0

and for the second phase:

Ā1 = A0 + χ 〈A〉1 , C̄1 = Γ1

m1 = Ā2
1 −

(
(1− κ) Ā1 + κΓ3

)2
+

((
(1− κ) Ā1 + κΓ3

)2 − 2C̄
(
(1− κ) Ā1 + κĀ1

)
− C̄2

1

)
(1− ε) K̄ε
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where the average values 〈A〉ι have been defined in (46).
Because some parameters are phase-dependent, the agent’s transition probability depends on the phase of the

system.
The parameter mι is a measure of the system’s inertia. It is null in the trivial phase, but positive in the non-trivial

phase. The fact that it should appear as an exponential term exp (−mιt) in (48) is relevant. Transitions are quickly
dampened through the interaction process in the non-trivial phase, and transition probabilities are reduced. The
strong inertia of the system keeps agents closer to their initial values than in the trivial phase.

Note also that multi-agents interactions do not appear directly in (48), but only through parameters. These
parameters encode the collective effects of the interactions and their impact at the individual level.

Average paths and classical dynamics Formula (48) is valid for small t (see Appendix 6 for larger t).
However, it is sufficient to find the agent’s average path. This is straightforward: for a gaussian weight, the average
path is found by setting the exponent in (48) to 0. This expresses the fact that we select the most likely path, which
is the average path. This yields the relations between the initial and final points:

0 =
((
C − C̄ι

)
−
(
C′ − C̄ι

)
(1 + (α+ β) t)

)
(50)

0 =

((
K − K̄ +

δK̄ + C̄ι
α

)
−
((

K′ − K̄ +
δK̄ + C̄ι

α

)
(1− αt)−

(
C′ − C̄ι

)
t+A′K̄εt

))

0 =
λ2 (A−A′)2

2t
+

(
A+A′

2
− Āi

)2

2
t

The treatment of these equations is usual. The equilibrium values are first found by setting both initial and final
values equal to the equilibrium: (

C′,K′, A′
)

= (C,K,A) = (Ce,Ke, Ae)

One finds directly:

Ke =
(1− ε) ĀiK̄ε − C̄i
δ − K̄ε−1Āiε

Ce = C̄i

Ae = Āi

Then, replacing these values in (50) yields directly the relations for the most likely path, or equivalently, the average
path: (

C − C̄i
)

=
(
C′ − C̄i

)
+
(
C′ − C̄i

)
(α+ β) t

(K −Ke) =
(
K′ −Ke

)
− α

(
K′ −Ke

)
t−

(
C′ − C̄i

)
t

λ2 (A−A′) = −
A+A′

2
− Āi

2
t

In the limit of small t, and using (132) and K+K′

2
→ K leads to a differential equation for the average path:

d

dt

(
C (t)− C̄e

)
=

(
C (t)− C̄e

)(
AF ′ (K (t)) + rc − δ

)
(51)

d

dt
(K (t)−Ke) =

(
AF ′ (K (t))− δ

)
(K (t)−Ke)−

(
C (t)− C̄i

)
λ2 d

(
A− Āi

)
dt

= −
(
A− Āi

)
2

The above equations are in fact those of a simplified model of capital accumulation: the standard approach is recovered
in average. The first equation is the usual Euler equation with interest rate. The second and third equations describe
the dynamics of capital and technology respectively. The fixed point Āi depends both on the system and the system’s
interactions, as seen in (110). Linearizing the dynamics around the fixed point leads to a usual saddle path dynamics,
with two eigenvalues:

1

2
rc − δ ±

1

2

√
r2
c − 4Āi + ĀiεF

′Ke

Usually, for rc = δ, the first eigenvalue is negative and the second positive. When the system moves along the unstable
equilibrium, the linear approximation breaks down. Actually, for large values of (K (t)−Ke), marginal productivity
falls below the depreciation rate, and capital accumulation stops. We will not dwell on this point since once the
phases of the system have been found, and the average dynamics equations have been written, interpretations are
standard.
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3.2.3 Corrections due to the interaction term

We go on studying the individual dynamics in the background created by system as a whole. To take into account
the individual interactions and their impact on (48), we have to turn back to the field theoretic formulation and to
find the modification of the transition functions due to the quartic interaction term in (43):

I =
γ

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2)(A2K1 +A1K2) Ψ (K1, C1, A1) Ψ (K2, C2, A2) (52)

Appendix 6 computes this correction. We come back to the definition of the probability transitions, and add the
contribution of (52) that was discarded while computing (48). We show that the Green function is modified at the
first order in γ as:

Ḡ
(
C,K,A,C′,K′, A′, t

)
= G

(
C,K,A,C′,K′, A′, t

)
× exp

(
−γV

(
C,K,A,C′,K′, A′, t

))
where the function V (C,K,A,C′,K′, A′, t) depends on the initial and final states:

V
(
C,K,A,C′,K′, A′, t

)
=

(
2t2AK +

t3

12

(
A−A′

)(
C − C′

)
+
t3

2

(
A−A′

)(
K −K′

)
− 1

12
K̄εt3

(
A−A′

)2)
+A

(
1

3
t3
(
C − C′

)
+ t2

(
K −K′

)
− 1

3
K̄εt3

(
A−A′

))
+ γt2

(
A−A′

)
K

It can be shown that the trajectories correspond to an average path with initial conditions (C (0) ,K (0) , A (0)),

and that for small interaction timepans,
(
Ċ (0) , K̇ (0) , Ȧ (0)

)
is modified at the first order in γ (see Appendix 6).

Defining δC (t), δK (t) and δA (t) the respective consumption, capital and technology deviations from their average
paths (51) due to the interactions, we can write:

δC (t) = 0 (53)

δK (t) = γ

(
7ct5

720Ā2
C (0) +

ct4

48Ā2
K (0) +

(
bt3

6KεĀ2
+
Kεct5

90

)
A (0)

)
+γ

(
− 7ct6

1440Ā2
Ċ (0) +

ct5

60Ā2
K̇ (0) +

(
bt4

24KεĀ2
+

3Kεct6

160Ā2

)
Ȧ (0)

)
δA (t) = γ

(
ct3

6KεĀ2
K (0)

)
+ γ

(
ct4

24
K̇ (0) + tȦ (0)

)
where:

b = 2

(
ν2 +

2K̄2ε

λ2α2
+

3$2

2 (2α+ β)β

)
c =

2

λ2

The interpretation of (53) is the following. From (53) we find directly the impact of the agent’s initial state on the
deviations δK (t) and δA (t):

∂ (δK (t))

∂K (0)
=

ct4

48Ā2
> 0 (54)

∂ (δK (t))

∂A (0)
=

bt3

6KεĀ2
+
Kεct5

90
> 0

∂ (δA (t))

∂K (0)
=

ct3

6KεĀ2
> 0

the interaction between individual capital and technology stocks produces a synergy effect, both stocks increase faster.
This effect is proportional to the initial values of the stocks. The higher these initial individual values, the faster both
stocks increase. Moreover, the polynomial time dependency of the elasticities shows that the accumulation dynamics
is faster than a linear process. Remark that this synergy effect is not contradictory with the eviction effect described
in the non-trivial phase. Actually, the results presented here are only valid at the individual level. In other words,
the individual dynamics in a given phase does not detect the collective mechanisms of interactions. The latters are
only detectable when analyzing the phase, and are indeed hidden in apparently exogenous parameters shaping the
agents environment.
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The accumulation dynamics is however dampened by fluctuations in technology stocks, measured by Ā2λ2. The
higher these fluctuations, the slower the accumulation process. The initial direction of the system, given by the terms
proportional to Ẋ (0) amplify this synergy effect. Actually, we can also compute from (53) the impact of the agent’s
initial momentum on the deviations δK (t) and δA (t):

∂ (δK (t))

∂K̇ (0)
= γ

ct5

60Ā2
> 0

∂ (δK (t))

∂Ȧ (0)
= γ

bt4

24KεĀ2
+

3Kεct6

160Ā2
> 0

∂ (δA (t))

∂Ȧ (0)
= γt > 0

∂ (δA (t))

∂K̇ (0)
= γ

ct4

24
> 0

a system that had started initially to accumulate both capital and technology stocks will accelerate faster compared
to a system that was at first in a constant equilibrium.

The effect of the consumption initial value is ambiguous. Technology improvement, measured by the dynamics of
A, increases productivity, and rates of return. It is thus optimal for agents to increase their savings and reduce their
consumption. Capital stock is positively correlated to C (0), as shown by its elasticity with respect to C (0):

∂ (δK (t))

∂C (0)
= γ

7ct5

720Ā2
> 0

In other word, a high level of initial consumption is an indicator of wealth. The agents interaction induce an
accumulation process that favors capital expenditures. Since consumption elasticity with respect to consumption
initial value ∂(δC(t))

∂C(0)
is null, any increase of wealth is spent on capital stock.

Besides, any initial increase in the consumption rate impairs capital accumulation, since:

∂ (δK (t))

∂Ċ (0)
= −γ 7ct6

1440Ā2
< 0

An initial increase in consumption will be smoothed over the entire timespan, and will eventually dampen the
accumulation process.

3.2.4 Two agents transition functions and interaction

The field formalism presented here also allows the study of interaction between individual agents. Consider the
simplest example of a two agents dynamics. Discarding interactions, the probability of transition between an initial
state: (

(K1, C1, A1)i , (K2, C2, A2)i
)

and a final state: (
(K1, C1, A1)f , (K2, C2, A2)f

)
is simply the product of the transition probabilities (48) for each agent:

G
(

(K1, C1, A1)i , (K2, C2, A2)i , (K1, C1, A1)f , (K2, C2, A2)f

)
≡ G

(
(K1, C1, A1)i , (K2, C2, A2)i , t

)
G
(

(K1, C1, A1)f , (K2, C2, A2)f , t
)

since they are considered to be independent. The global interaction effect, the impact of the entire system on each
agent is included in the phase of the system, through the parameters of the transition probabilities.

When the interaction term is included, the transition probability has to be modified. In Appendix 6 compute the
correction for the transition probability for two agents. We consider an initial state

(
(K1, C1, A1)i , (K2, C2, A2)i

)
and a final state

(
(K1, C1, A1)f , (K2, C2, A2)f

)
.

In presence of the interaction term, appendix shows that:

I =
γ

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2)(A2K1 +A1K2) Ψ (K1, C1, A1) Ψ (K2, C2, A2)
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the transition probability is modified in the following way:

GI
(

(K1, C1, A1, t)i , (K2, C2, A2, t)i , (K1, C1, A1, t)f , (K2, C2, A2, t)f

)
≡ G

(
(K1, C1, A1)i , (K2, C2, A2)i , (K1, C1, A1)f , (K2, C2, A2)f

)
exp (−VI)

where:

VI = γt2 (〈A1〉 〈K2〉+ 〈K1〉 〈A2〉) +
γt3

24
(〈A1〉∆C2 + ∆C1 〈A2〉 −Kε (〈A1〉∆A2 + ∆A1 〈A2〉))

with:

〈Xj〉 =
(Xj)i + (Xj)f

2
∆Xj = (Xj)f − (Xj)i

for any variable X = C, K, or A and agent j = 1 or 2. The quantity 〈Xj〉 computes the average value of X for agent
j along the path, and ∆Xj , the variation of X along this path.

Due to the interaction, the two agents’ transition probabilities are now entangled. The average trajectory for
one agent is modified by the other agent’s path (see Appendix 6 ). We write δX2→1 (t) the correction of agent 1’s
trajectory due to agent 2 for X = C, K, or A, and δX1→2 (t) the correction of agent 2’s trajectory due to agent 1.
Appendix 6 shows that:

δK2→1 (t) = γbt 〈A2〉 (55)

δA2→1 (t) = γ

(
1

6
c

∆C2

2
− 1

6
cKε∆A2

2

)
t3 + γct 〈K2〉

δK1→2 (t) = γbt 〈A1〉

δA1→2 (t) = γ

(
1

6
c

∆C1

2
− 1

6
cKε∆A1

2

)
t3 + γct 〈K1〉

with:

X̄i =
Xi (0) +Xi (t)

2
∆Xi

2
=

Xi (t)−Xi (0)

2

Formula (55) allows to find the dependency of an agent behavior on other agent’s path. The elasticities are:

∂ (δK1 (t))

∂Ā2 (0)
=
∂ (δA1 (t))

∂K̄2 (t)
= t > 0 (and other elasticities with respect to X̄2 are null)

which means that the average technology of agent 2 impacts positively the accumulation of capital for agent 1, and
that the accumulated stock of agent 2 accelerates the technology improvement for agent 1. Agent 2 participates to
the environment of agent 1, and both its capital and technology stocks influence the other agents.

These elasticities are proportional to the interaction timespan: the longer agents interact, the higher the final
stocks. The elasticities with respect to the initial direction of agent’s 2 path may seem counterintuitive.

∂ (δA1 (t))

∂∆A2 (0)
= −1

6
cKεt3 < 0

∂ (δA1 (t))

∂C2 (t)
=

1

6
ct3 > 0

Technology stock is negatively correlated to other agents’ accumulation rate. This is the consequence of the acceler-
ation of accumulation process for both agents and our choice of representation of a path as function of the average
value of the path X̄2: since the dynamic follows an accelerating pattern, its representative curve is below the average
X̄2 most of the time. As a consequence, the accumulated stock are below the linear approximation in X̄2. The term
proportional to ∆X2

2
is thus a correction to this linear approximation.
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3.3 Synthesis and Discussion

The application of our formalism to a basic Business Cycle model has shown the implications of introducing multiple
agents interacting through technology and capital stocks. This has allowed us to inspect setups not accessible to
the usual representative agents models. It has also allowed to detect collective effects due to large number of agents,
such as the appearance of multiple phases or macro equilibria. In turn, we have seen how these phases impact the
individual agents’ dynamics. These individual dynamics are formally identical to those used in representative agents
models. It is at this point however that some major major differences with standard models appear:

In our formalism, the individual agents’ dynamics are derived from a collective background. They emerge from
the model, but cannot be imposed as a defining point of the model. This translates into several features.

First, the individual dynamics parameters are not exogenous. As mentioned above, they depend on the global
system. A change of phase in the entire system induces a structural break that actually modifies the parameters of
the agent’s dynamic equations.

Second, the fact that individual behaviors emerge from the system extends to any subset of agents. Their dynamics
and interactions, too, can and should be deduced from the collective background (see section 3.2.4). This allows a
straightforward and detailed analysis of agents’ interactions, while preserving the agents’ heterogeneity.

As a result, and third, individual agents cannot be considered as representative agents. Section (3.2.3) demon-
strates that individual features do not aggregate to produce similar effects at the macro level. The synergy effect
in equation (54) shows that an agent may experience a virtuous circle between his capital and technology, even in
the non-trivial phase characterized at a macro level by an eviction effect and a lower production. These two macro
features are present at the individual level, but only as a hidden externality that shapes the agent’s environment
through seemingly exogenous parameters.

To conclude, the representative agent paradigm cannot detect some macro features from the description of par-
ticular agents. Some conclusions at the individual level do not agregate.

4 Conclusion

This paper has presented an analytical treatment of economic systems with an arbitrary number of agents that keeps
track of the systems’ interactions and agents’ complexity. As significant results, we have shown that a field theory
formalism may reveal some emerging equilibria, and studied the influence of these equilibria on the agent’s individual
dynamics. This method can be applied to various economic models.

In this paper we have, for the sake of clarity, deliberately set aside some matters developped in (Gosselin,
Lotz, Wambst 2017), such as strategic behaviors and heterogeneity among agents, in information, goals, or actions.
However, our formalism extends to such cases. Social interactions and economic networks could also be included.
These subjects are under current research.

Ultimately, our formalism should shed some lights on the matter of aggregation. Indeed, despite the fact that
field theory does not deal with aggregates, it allows to recover macroeconomic quantities through averages. A natural
question would be to find even partial relations between these macroeconomic quantities.
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Appendix 1

We show the derivation of (12). We will remove the agent’s index i since the argument deals with one individual
agent.

If Y (t+ n) is centered on Ȳ with variance σ2,
∑
n>0 Y (t+ n) will be centered on Ȳ with variance Tσ2, and the

integration over Y (t+ n) yields:∫ ∏
dY (t+ n) exp

(
− 1

T

(
B (t+ 1) +

∑
n>0

(
Y (t+ n)− C̄

))2

− 1

σ2

T∑
n=1

(
Y (t+ n)− Ȳ

)2)

=

∫ ∏
dY ′ (t+ n) exp

− 1

T

(
B (t+ 1) +

T∑
n=1

(
Y ′ (t+ n)−

(
C̄ − Ȳ

)))2

− 1

σ2

T∑
n=1

(
Y ′ (t+ n)

)2
with Y ′ (t+ n) = Y (t+ n)− Ȳ . The exponential rewrites:

exp

− 1

T

(
B (t+ 1) +

T∑
n=1

(
Y ′ (t+ n)−

(
C̄ − Ȳ

)))2

− 1

σ2

T∑
n=1

(
Y ′ (t+ n)

)2
= exp

(
−
(
B (t+ 1)− T

(
C̄ − Ȳ

))2
T

−
2
(
B (t+ 1)− T

(
C̄ − Ȳ

))
T

T∑
n=1

Y ′ (t+ n)−
(

1

σ2
+

1

T

) T∑
n=1

(
Y ′ (t+ n)

)2)

and the integration over the Y ′ (t+ n) leads to a weight:

exp

(
−
(
B (t+ 1)− T

(
C̄ − Ȳ

))2
T

−
2
(
B (t+ 1)− T

(
C̄ − Ȳ

))
T

T∑
n=1

Y ′ (t+ n)−
(

1

σ2
+

1

T

) T∑
n=1

(
Y ′ (t+ n)

)2)

= exp

(
−
(
B (t+ 1)− T

(
C̄ − Ȳ

))2
T

+
σ2
(
B (t+ 1)− T

(
C̄ − Ȳ

))2
T (σ2 + T )

)

= exp

(
− 1

T + σ2

(
B (t+ 1)− T

(
C̄ − Ȳ

))2)
(56)

We can now write B (t+ 1) as a function of past variables:

B (t+ 1) =
∑
n60

Y (t+ n)−
∑
n60

C (t+ n) (57)

and, along with the expression Bt + Y (t)−B (t+ 1)− C̄ = C (t)− C̄, write the global weight (56) as:

exp

(
−
(
C (t)− C̄

)2 − 1

T + σ2

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n)− T
(
C̄ − Ȳ

))2)
(58)

' exp

(
−
(
C (t)− C̄

)2 − 1

T

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n)− T
(
C̄ − Ȳ

))2)

for a large enough time scale, so that T � σ2. Recall that terms in the exponential depend only on past variables,
and do not modify the statistical weight. This statistical weigh can thus be written:

exp

(
−
(
T + 1

T

)(
C (t)− T

T + 1
C̄ − 1

T + 1

(∑
n60

Y (t+ n)−
∑
n<0

C (t+ n)− T
(
C̄ − Ȳ

)))2)

= exp

(
−
(
T + 1

T

)(
C (t)− 1

T + 1

(∑
n60

Y (t+ n)−
∑
n<0

C (t+ n) + T Ȳ

))2)

= exp

(
−
(
T + 1

T

)(
C (t)− Ȳ − 1

T + 1

(∑
n60

(
Y (t+ n)− Ȳ

)
−
∑
n<0

(
C (t+ n)− Ȳ

)))2)
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For T � 1, the last expression reduces to:

exp

(
−

(
C (t)− Ȳ − 1

T

(∑
n60

(
Y (t+ n)− Ȳ

)
−
∑
n<0

(
C (t+ n)− Ȳ

)))2)

and defining Ĉ (t) = C (t)− Ȳ , we are left with:

exp

(
−

(
Ĉ (t)− 1

T

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

))2)
(59)

To define the global statistical weight for the system over all periods, we can now sum the exponentiated terms in
(59) to obtain the weight:

exp

(
−

T∑
t=1

(
Ĉ (t)− 1

T

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

))2)

This weight describes the variables:

X (t) = Ĉ (t)− 1

T

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

)

as gaussian and independent. It can now be written differently by remarking that:

X (t)−X (t+ 1)

= Ĉ (t)− 1

T

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

)
−

(
Ĉ (t+ 1)− 1

T

(∑
n60

Ŷ (t+ 1 + n)−
∑
n<0

Ĉ (t+ 1 + n)

))

= Ĉ (t)− Ĉ (t+ 1) +
1

T

(
Ŷ (t+ 1)− Ĉ (t)

)
=

T − 1

T
Ĉ (t)− Ĉ (t+ 1) +

1

T
Ŷ (t+ 1)

It then allows computing the density probability of:

T − 1

T
Ĉ (t)− Ĉ (t+ 1) +

1

T
Ŷ (t+ 1)

by writing:∫
exp

(
−X2 (t)−X2 (t+ 1)

)
×δ
(
X (t)−X (t+ 1)−

(
T − 1

T
Ĉ (t)− Ĉ (t+ 1) +

1

T
Ŷ (t+ 1)

))
dX (t) dX (t+ 1)

=

∫
exp

(
−X2 (t)−

(
X (t)−

(
T − 1

T
Ĉ (t)− Ĉ (t+ 1) +

1

T
Ŷ (t+ 1)

))2
)
dX (t)

= exp

−
(
T−1
T
Ĉ (t)− Ĉ (t+ 1) + 1

T
Ŷ (t+ 1)

)2

2


For T large, T−1

T
Ĉ (t) ' Ĉ (t). This describes a brownian type process for Ĉ (t), with variance 2. This brownian

motion is constrained to XT = 0 through the constraint:

XT = Ĉ (T )−

(∑
n60

Ŷ (T + n)−
∑
n<0

Ĉ (T + n)

)
=
∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n) = 0
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so that the overall weight becomes, in the Ĉ (t) representation and in first approximation for T large:

exp

(
−
∑(

Ĉ (t)− Ĉ (t+ 1) +
1

T
Ŷ (t+ 1)

)2

−

(∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n)

))

×δ

(∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n)

)

' exp

− 2∑(
Ĉ (t)− Ĉ (t+ 1) +

1

T
Ŷ (t+ 1)

)
−

(∑
n60 Ŷ (T + n)−

∑
n60 Ĉ (T + n)

)2

σ2


' exp

−∑(
Ĉ (t)− Ĉ (t+ 1)

)2

−

(∑
n60 Ŷ (T + n)−

∑
n60 Ĉ (T + n)

)2

σ2

 (60)

with σ2 � 1. The second line allows for small deviations from the overall constraint.

Formula (60) is straightforward to generalize for agents with varying horizon. Actually, if the time horizon at
time t is T − t, the statistical weight (59) at time t becomes:

exp

(
−

(
Ĉ (t)− 1

T − t

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

))2)
(61)

As before, defining the variables

X (t) =

(
Ĉ (t)− 1

T − t

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

))

The expression (61) shows that the X (t) are gaussian and independent. Computing X (t)−
(
T−t−1
T−t

)
X (t+ 1) yields:

X (t)−
(
T − t− 1

T − t

)
X (t+ 1)

= Ĉ (t)− 1

T − t

(∑
n60

Ŷ (t+ n)−
∑
n<0

Ĉ (t+ n)

)

−
(
T − t− 1

T − t

)(
Ĉ (t+ 1)− 1

T − t− 1

(∑
n60

Ŷ (t+ 1 + n)−
∑
n<0

Ĉ (t+ 1 + n)

))

= Ĉ (t)−
(
T − t− 1

T − t

)
Ĉ (t+ 1) +

1

T − t

(
Ŷ (t+ 1)− Ĉ (t)

)
=

(
T − t− 1

T − t

)(
Ĉ (t)− Ĉ (t+ 1) +

1

T − t Ŷ (t+ 1)

)
which implies that the probability density for Ĉ (t)− Ĉ (t+ 1) + 1

T−t Ŷ (t+ 1) can be computed by:∫
exp

(
−X2 (t)−X2 (t+ 1)

)
×δ
((

T − t
T − t− 1

)
Xt −X (t+ 1)−

(
Ĉ (t)− Ĉ (t+ 1) +

1

T − t Ŷ (t+ 1)

))
dXtdX (t+ 1)

=

∫
exp

(
−X2

t −
(

T − t
T − t− 1

)2(
Xt −

(
T − t− 1

T − t

)(
Ĉ (t)− Ĉ (t+ 1) +

1

T − t Ŷ (t+ 1)

))2
)
dXt

= exp

−
(
Ĉ (t)− Ĉ (t+ 1) + 1

T−t Ŷ (t+ 1)
)2

(
T−t
T−t−1

)2
(

1 +
(

T−t
T−t−1

)2
)


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This describes a brownian type process for Ĉ (t) of variance
(

T−t
T−t−1

)2
(

1 +
(

T−t
T−t−1

)2
)

. For T large, we have(
T−t
T−t−1

)2
(

1 +
(

T−t
T−t−1

)2
)
' 2 and one recovers the brownian motion, for t � T . This brownian motion is

constrained to XT = 0 through the constraint:

X (T ) = Ĉ (T )−

(∑
n60

Ŷ (T + n)−
∑
n<0

Ĉ (T + n)

)
=
∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n) = 0

so that the overall weight in the Ĉ (t) representation becomes in first approximation for T large:

exp

(
−
∑(

Ĉ (t)− Ĉ (t+ 1) +
Ŷ (t+ 1)

T − t

)2

−

(∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n)

))

×δ

((∑
n60

Ŷ (T + n)−
∑
n60

Ĉ (T + n)

))

' exp

−∑(
Ĉ (t)− Ĉ (t+ 1) +

Ŷ (t+ 1)

T − t

)2

−

(∑
n60 Ŷ (T + n)−

∑
n60 Ĉ (T + n)

)2

σ̄2

 (62)

The second line allows for small deviations from the overall constraint. Under a strictly binding constraint, σ̄2 � 1.
In the continuous version, we can replace the sum over t by an integral. Formulas (60) and (62) become:

exp
(
Ueff

)
≡ exp

(∫
dtUeff

(
Ĉ (t)

))

= exp

− ∫ dt

(
d

dt
Ĉ (t) +

1

T − t Ŷt+1

)2

−

(∫
dtŶt −

∫
dtĈ (t)

)2

σ̄2


The first term means (discarding the constraint) that d

dt
Ĉ (t)+ 1

T−t Ŷ (t+ 1) is gaussian of variance 1. Thus, if Ŷ (t+ 1)

is considered purely random, one can consider that d
dt
Ĉ (t) is gaussian with variance 1+V ar

(
1

T−t Ŷ (t+ 1)
)

= 1
β
> 1

(for T large, we can consider β as constant) and replace the first term of Ueff by β
(
d
dt
Ĉ (t)

)2

to obtain:

expUeff = exp

−β ∫ dt

(
d

dt
Ĉ (t)

)2

−

(∫
dtŶ (t)−

∫
dtĈ (t)

)2

σ̄2

 (63)

As a consequence of (60), (62) and (63), the introduction of a constraint is equivalent to the introduction of non-
local interaction terms. The non-local terms may, in some cases, be approximated by some terms in the derivatives
of C (t) (see Gosselin, Lotz Wambst 2018).

Appendix 2

We consider some constraints within the context of non quadratic utilities. To do so, we start with a simple example
and consider the budgent constraint (10) for a single agent:

C (t) = B (t) + Y (t)−B (t+ 1) (64)

At time t, the agent’s statistical weight has the general form (11):

∫ ∏
n>1

exp

(
U (B (t) + Y (t)−B (t+ 1)) +

∑
n>0

U (B (t+ n) + Y (t+ n)−B (t+ n+ 1))

)
dB (t+ n) (65)

Performing the following change of variables for n > 1:

B (t+ n) → B (t+ n)−
∑
m>n

Y (t+m)

B (t+ n) + Y (t+ n)−B (t+ n) → B (t+ n)−B (t+ 1 + n)
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the statistical weight (65) become:∫ ∏
n>1

exp(U(B(t)+Y (t)−B(t+1))+U(B(t+1)−B(t+2)+
∑
n>1

Y (t+n))+
∑
n>1

U(B(t+n)−B(t+1+m)))dB(t+n) (66)

Except for the case of a quadratic utility function, the successive integrals∫ ∏
n>1

exp

(
U

(
B (t+ 1)−B (t+ 2) +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U (B (t+ n)−B (t+ 1 + n))

)
dB (t+ n) (67)

arising in (66) cannot be computed exactly, . However, we can still define a function Ǔ (B (t+ 1)) resulting from the
convolution integrals (67):

exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

))
(68)

=

∫
exp

(
U

(
B (t+ 1)−B (t+ 2) +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U (B (t+ n)−B (t+ n+ 1))

)∏
n>1

dB (t+ n)

The function Ǔ can be approximatively computed - we will comment on that later in the paragraph - however its
precise form is not needed here. Instead, we use the general formula (68) to write (66) as:

exp

(
U (B (t) + Y (t)−B (t+ 1)) + Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

))
(69)

Here again (see the first paragraph of this section), we can get rid of the variables Y (t+ n) by considering them to
be gaussian random variables centered on Ȳ for n > 1. The transition probability for B (t) is obtained by integrating
(69) over the variables Y (t+ n) :∫ ∏

dY (t+ n) exp

(
U (B (t) + Y (t)−B (t+ 1)) + Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

)
− 1

σ2

∑
n>0

(
Y (t+ n)− Ȳ

)2)
(70)

This expression can be simplified. Actually, in the gaussian integrals:∫ ∏
dY (t+ n) exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

)
− 1

σ2

∑
n>0

(
Y (t+ n)− Ȳ

)2)
(71)

the variable
∑
n>1 Y (t+ n) has mean T Ȳ and variance Tσ2. As a consequence, if we assume T large enough so that√

T � σ, then ∑
n>1

Y (t+ n) ' T Ȳ ±
√
Tσ ' T Ȳ

in first approximation. This allows to simplify (71):∫ ∏
dY (t+ n) exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

)
− 1

σ2

∑
n>0

(
Y (t+ n)− Ȳ

)2)
' exp

(
Ǔ
(
B (t+ 1) + T Ȳ

))
so that, using the constraint (64) to write B (t+ 1) as a function of the past variables:

B (t+ 1) +
∑
n>1

Y (t+ n) =
∑
n60

Y (t+ n)−
∑
n60

C (t+ n) +
∑
n>1

Y (t+ n)

'
∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + T Ȳ

the weight (70) results in:
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∫ ∏
dY (t+ n) exp

(
U (B(t) + Y (t)−B(t+ 1)) + Ǔ

(
B(t+ 1) +

∑
n>1

Y (t+ 1)

)
−
∑
n>0

(
Y (t+ n)− Ȳ

)2
σ2

)
(72)

' exp

(
U (B (t) + Y (t)−B (t+ 1)) + Ǔ

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + T Ȳ

))
We can consider that the term: ∑

n60

Y (t+ n)−
∑
n60

C (t+ n) + T Ȳ

has relatively small fluctuations with respect to its average T Ȳ , we can approximate Ǔ by its second order expansion:

Ǔ

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + T Ȳ

)
' C − γ

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + Ȳ

)2

the values of C and γ depending on (68). Then, up to the irrelevant constant C, (72) simplifies to the second order
approximation:

exp

(
U (B (t) + Y (t)−B (t+ 1))− γ

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + Ȳ

)2)
(73)

= exp

(
U (C (t))− γ

(∑
n60

Y (t+ n)−
∑
n60

C (t+ n) + Ȳ

)2)
a result similar to the first example of this section. The constraint can be introduced as a quadratic and non local
contribution to the utility U (Ct). This result is not surprising. The constraint being imposed on the whole path
of the system, the inclusion of its intertemporal quadratic expansion enforces the constraint on average, as needed.
The result is similar to (58), except that the quadratic utility has been replaced by a more general function. In first
approximation, one can thus share U (C (t)) in a qudratic approximation plus some perturbative terms V (C (t)).
Then proceeding with the quadratic term as we did in Appendix 1 to define the statistical weight, one recovers a
formula similar to (62) for the consumption path:

exp

−∑((
Ĉ (t)− Ĉ (t+ 1)

)2

+ V (C (t))

)
−

(∑
n60 Ŷ (T + n)−

∑
n60 Ĉ (T + n)

)2

σ̄2


where Ŷ (t+1)

T−t has been neglected for T � 1.

Let us close this section by quickly discussing the form of the function Ǔ defined by (68):

exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

))
(74)

=

∫
exp

(
U

(
B (t+ 1)−B (t+ 2) +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U (B (t+ n)−Bt+n+1)

)∏
n>1

dB (t+ n)

These integrals can be approximatively computed with the saddle path approximation technique developed in the
first and second sections. The saddle path result is not exact for a non quadratic utility, but constitutes a sufficient
approximation for us. The saddle path (74) for the function inside the exponential can be written as a difference
equation B (t+ n) with n > 1:

U ′ (B (t+ n)−B (t+ n+ 1))− U ′ (B (t+ n− 1)−B (t+ n)) = 0 for n > 2

and:

U ′ (B (t+ 1)−B (t+ 2))− U

(
B (t+ 1)−B (t+ 2) +

∑
m>1

Y (t+m)

)
for n = 2

Once the saddle path B̄ (t+ n) is found, it can be introduced in (74) to yield:

exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

))
= exp

(
U

(
B (t+ 1)− B̄t+2 +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U
(
B̄ (t+ n)− B̄ (t+ 1 + n)

))
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and a first approximation for Ǔ is thus:

Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

)
= U

(
B (t+ 1)− B̄ (t+ 2) +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U
(
B̄ (t+ n)− B̄ (t+ 1 + n)

)
(75)

Some corrections to the saddle path can be included if we expand the RHS to the second order around the saddle
point by letting

B (t+ n) = B̄ (t+ n+ 1) + δB (t+ n)

and then integrate over δB (t+ n):

exp

(
Ǔ

(
B (t+ 1) +

∑
n>1

Y (t+ n)

))
(76)

= exp

(
U

(
B (t+ 1)− B̄ (t+ 2) +

∑
n>1

Y (t+ n)

)
+
∑
n>1

U
(
B̄ (t+ n)− B̄ (t+ n+ 1)

))

×
∫

exp

(
U ′′
(
B (t+ 1)− B̄ (t+ 2) +

∑
n>1

Y (t+ n)

)
(δB (t+ 2))2

+
∑
n>1

U ′′
(
B̄ (t+ n)− B̄ (t+ n+ 1)

)
(δB (t+ n)− δB (t+ n))2

)∏
n>1

dδB (t+ n)

The log of the integrals in (76) will yield some corrections to (75), but we will not inspect further the precise form of
these corrections.

Appendix 3

When some discount rate is introduced, we go back to the initial individual agent formulation and modify it accord-
ingly. Recall that the transition probabilities between two consecutive state variables of the system are defined by

(??) with a discount rate β added:

P (Bi (t) , Bi (t+ 1)) =

∫ T∏
n=2

dB (t+ n) exp

(
U (C (t)) +

∑
n>0

βnU (C (t+ n))

)

but now, the constraint rewrites:
B (t+ 1) = (1 + r)(B (t) + Y (t)− C (t))

or equivalently:

C (t) = B (t) + Y (t)− B (t+ 1)

(1 + r)

Then, the integral over the B (t+ n) is similar to the previous one, since one can change the variables: B(t+n)
(1+r)n

→
B (t+ n) for n > 1. We assume that the uncertainty about future periods increases with a factor (1 + r).
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=

∫ T∏
n=2

dB (t+ n) exp

(
−
(
C (t)− C̄

)2 −∑
n>0

(
C (t+ n)− C̄

)2)

=

∫ T∏
n=2

dB (t+ n) exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

−
∑
n>0

(
β

(1 + r)

)n(
B (t+ n) + Y (t+ n)− B (t+ n+ 1)

(1 + r)
− C̄

)2
)

=

∫ T∏
n=2

(1 + r)n dB (t+ n)′ exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

−
∑
n>0

(1 + r)n βn
(
B′ (t+ n)−B′ (t+ n+ 1) +

Y (t+ n)− C̄
(1 + r)n

)2
)

=

(
T∏
n=2

(1 + r)n
)

exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

− 1∑
n>0 (β (1 + r))−n

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y (t+ n)− C̄
(1 + r)n

)2)

=

(
T∏
n=2

(1 + r)n
)

exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

− s (T )

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y (t+ n)− C̄
(1 + r)n

)2)

where the sum has been performed up to T where T is the time horizon defined previously and T � 1, and

s−1 (T ) =
∑
n>0

(
β (1 + r)2)−n. Since β < 1:

s−1 (T ) >
∑
n>0

((1 + r))−n ' 1

r

for r � 1. As a consequence, s (T ) < r. For β = 0, s−1 (T ) = 1
r
.

The factor
T∏
n=2

(1 + r)n can be included in the normalization factor, as explained before, and then we are left

with:

P (Bi (t) , Bi (t+ 1)) =

∫ T∏
n=2

dB (t+ n) exp

(
U (C (t)) +

∑
n>0

U (C (t+ n))

)
(77)

= exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

− s (T )

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y (t+ n)− C̄
(1 + r)n

)2)

which is similar to (56), except the 1
(1+r)

factor in front of B (t+ 1) and the (1 + r)n multiplying
(
Y (t+ n)− C̄

)
.

One also replaces T by 1
s(T )

. Then the previous analysis following (56) applies, except that, writing B (t+ 1) as a
function of the past is now:

B (t+ 1)

1 + r
=
∑
n60

Y (t+ n)

(1 + r)n
−
∑
n60

C (t+ n)

(1 + r)n
(78)

with B (t) → 0, t → T to impose the transversality condition. The number of periods, T , is itself unknown, but as
said before T is the expected mean process duration.

If Y (t+ n) is centered on Ȳ with variance (1 + r)2n σ2 (we assume that the discounted variable Y (t+n)
(1+r)n

has a

constant variance σ2),
∑
n>0 Y (t+ n) centered on Ȳ with variance Tσ2, integration over Y (t+ n) yields:

∫ ∏
dY (t+ n) exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y (t+ n)− C̄
(1 + r)n

)2

− 1

σ2

T∑
n=1

(
Y (t+ n)− Ȳ

)2)

=

∫ ∏
dY ′ (t+ n) exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y ′ (t+ n) + Ȳ − C̄
(1 + r)n

)2

− 1

σ2

T∑
n=1

(
Y (t+ n)− Ȳ

)2)
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with Y ′ (t+ n) = Y (t+ n) − Ȳ . Neglecting the terms Y ′ (t+ n)Y ′ (t+m) for n 6= m, since they are null in
expectations, the exponential rewrites (for a time horizon T � 1):

exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+
∑
n>0

Y ′ (t+ n) + Ȳ − C̄
(1 + r)n

)2

− 1

σ2

T∑
n=1

(
Y (t+ n)− Ȳ

)2)

= exp

((
−s (T )

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

))2
)

−2s (T )

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

)) T∑
n=1

Y ′ (t+ n)

(1 + r)n
−

T∑
n=1

(
1

σ2
+

s (T )

(1 + r)2n

)(
Y (t+ n)− Ȳ

)2)

' exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

))2

−2s (T )

T∑
n=1

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

)) Y ′ (t+ n)

(1 + r)n
− 1

σ2

T∑
n=1

(
Y (t+ n)− Ȳ

)2)

for σ2 < 1 and since s (T ) < r � 1.
and the integration over the Y ′ (t+ n) leads to a weight:

exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

))2

+
σ2s2 (T )(1 + r)

r

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

))2
)

' exp

(
−s (T )

(
B (t+ 1)

(1 + r)
+

1

r

(
Ȳ − C̄

))2
)

since s (T )� r and thus σ2s2(T )(1+r)
r

� s (T )σ2 (1 + r)� s (T ). Using that:

B (t+ 1)

1 + r
=
∑
n60

Y (t+ n)

(1 + r)n
−
∑
n60

C (t+ n)

(1 + r)n

the weight can be written:

exp

(
−
(
B (t) + Y (t)− B (t+ 1)

(1 + r)
− C̄

)2

− s (T )

(∑
n60

Y (t+ n)

(1 + r)n
−
∑
n60

C (t+ n)

(1 + r)n
+

1

r

(
Ȳ − C̄

))2)

= exp

(
−
(
C (t)− C̄

)2 − s (T )

(∑
n60

Y (t+ n)

(1 + r)n
−
∑
n60

C (t+ n)

(1 + r)n
+

1

r

(
Ȳ − C̄

))2)

= exp

 − (1 + s (T ))
(
C (t)− C̄

)2 − s (T )
(∑

n60
Y (t+n)
(1+r)n

−
∑
n<0

C(t+n)
(1+r)n

− C̄ + 1
r

(
Ȳ − C̄

))2

+2s (T )
(∑

n60
Y (t+n)
(1+r)n

−
∑
n<0

C(t+n)
(1+r)n

− C̄ − 1
r

(
C̄ − Ȳ

)) (
C (t)− C̄

)


' exp

 − (C (t)− C̄
)2 − s (T )

(∑
n60

Y (t+n)
(1+r)n

−
∑
n<0

C(t+n)
(1+r)n

− C̄
(1+r)

+ 1
r

(
Ȳ − C̄

))2

+2s (T )
(∑

n60
Y (t+n)
(1+r)n

−
∑
n<0

C(t+n)
(1+r)n

− C̄ − 1
r

(
C̄ − Ȳ

)) (
C (t)− C̄

)


as in the text, the terms in the exponential depending only of past and predetermined variables are irrelevant to the
statistical weight, so that this one can be written:

exp

(
−

(
C (t)− C̄ − s (T )

(∑
n60

Y (t+ n)

(1 + r)n
−
∑
n<0

C (t+ n)

(1 + r)n
− C̄ +

1

r

(
Ȳ − C̄

)))2)

= exp

(
−

((
C (t)− C̄ + s (T )

(
C̄ − 1

r

(
Ȳ − C̄

)))
− s (T )

(∑
n60

Y (t+ n)

(1 + r)n
−
∑
n<0

C (t+ n)

(1 + r)n

))2)

' exp

(
−

(
Ĉ (t)− s (T )

(∑
n60

Ŷ (t+ n)

(1 + r)n
−
∑
n<0

Ĉ (t+ n)

(1 + r)n

))2)
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for s (T ) � r, with Ŷ (t+ n) = Y (t+ n) − C̄ + s (T )
(
C̄ − 1

r

(
Ȳ − C̄

))
for n 6 0 and Ĉ (t+ n) = C (t+ n) +

s (T )
(
C̄ − 1

r

(
Ȳ − C̄

))
for n 6 0. For β = 1, s (T ) ' r, and then Ŷ (t+ n) = Y (t+ n) −

(
Ȳ − rC̄

)
, Ĉ (t+ n) =

C (t+ n)− r
(
Ȳ − rC̄

)
. In first approximation, Ŷ (t+ n) = Y (t+ n), Ĉ (t+ n) = C (t+ n).

We can now proceed as in the derivation of (60), and switch the representation to express the probabilies for the
variables. This weight can be written differently. Actually, it describes the variables

X (t) = Ĉ (t)− s (T )

(1 + r)

(∑
n60

Ŷ (t+ n)

(1 + r)n
−
∑
n<0

Ĉ (t+ n)

(1 + r)n

)
as gaussian and independent. Now, remark that at the first order in r:

(1 + r)X (t)−X (t+ 1)

= (1 + r) Ĉ (t)− s (T )

(1 + r)

(∑
n60

Ŷ (t+ n)

(1 + r)n
−
∑
n<0

Ĉ (t+ n)

(1 + r)n

)

−

(
Ĉ (t+ 1)− s (T )

(1 + r)

(∑
n60

Ŷ (t+ 1 + n)

(1 + r)n
−
∑
n<0

Ĉ (t+ 1 + n)

(1 + r)n

))

' (1 + r) Ĉ (t)− Ĉ (t+ 1) + s (T )

(
Ŷ (t+ 1)

(1 + r)
− Ĉ (t)

)

= (1 + r − s (T )) Ĉ (t)− Ĉ (t+ 1) +
s (T )

(1 + r)
Ŷ (t+ 1)

' (1 + r) Ĉ (t)− Ĉ (t+ 1) +
s (T )

(1 + r)
Ŷ (t+ 1)

It then allows to compute the density probability of:

(1 + r) Ĉ (t)− Ĉ (t+ 1) +
s (T )

(1 + r)
Ŷ (t+ 1)

by writing: ∫
exp

(
−X2 (t)−X2 (t+ 1)

)
×δ
(

(1 + r)X (t)−X (t+ 1)−
(

(1 + r) Ĉ (t)− Ĉ (t+ 1) +
s (T )

(1 + r)
Ŷ (t+ 1)

))
dX (t) dX (t+ 1)

=

∫
exp

(
−X2 (t)−

(
(1 + r)X (t)−

(
(1 + r) Ĉ (t)− Ĉ (t+ 1) +

s (T )

(1 + r)
Ŷ (t+ 1)

))2
)
dX (t)

= exp

−
(
Ĉ (t)− Ĉ(t+1)

(1+r)
+ s(T )

(1+r)
Ŷ (t+ 1)

)2

1 + (1 + r)2


' exp

−
(
Ĉ (t)− Ĉ (t+ 1)(1− r) + s (T ) Ŷ (t+ 1)

)2

2


This stochastic process is constrained to XT = 0 through the constraint:

X (T ) = Ĉ (T )−

( ∑
06n6T

Ŷ (n)

(1 + r)n
−

∑
06n6T

Ĉ (n)

(1 + r)n

)
=

∑
06n6T

Ŷ (n)

(1 + r)n
−
∑

06i6T

Ĉ (n)

(1 + r)n
= 0

Given that s (T ) Ŷ (t+ 1) has variance s2 (T )σ2 � 1, including the global constraint yields the statistical weight over
all periods:

exp

−∑
t

(
Ĉ (t)− Ĉ (t+ 1)(1− r)

)2

2 (1 + s2 (T )σ2)

 δ

( ∑
06n6T

Ŷ (n)

(1 + r)n
−

∑
06n6T

Ĉ (n)

(1 + r)n

)

' exp

−∑
t

(
Ĉ (t+ 1)− Ĉ (t)− rĈ (t+ 1)

)2

2
−

(∑
06n6T

Ŷ (n)
(1+r)n

−
∑

06n6T
Ĉ(n)

(1+r)n

)2

Tσ2


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Appendix 4

The results of the first section can be summed up as follows. We described a set of several individual economic agents
by a stochastic process defined in a space whose dimension depends of the number of degrees of freedom, that is
number of state variables, of the system. We now eplain how this description can e replaced by a field formalism that
will facilitate the computations for a large number of agents. For the sake of the exposition, we choose a simplified
version of the model developed previously, in its continuous time version. We start first by considering a single
agent discarding the global part of the constraint. We will then introduce an arbitrary number of agents without
interactions, and include the interactions ultimately. The behavior of this agent can be represented during a time
span T by a probability weight for each possible path of actions. For a path X (t) of actions - such as consumption,
production, signals - for t ∈ [0, T ] , the weight (17) is:

P (X) = exp

(
−

(
1

σ2

∫ T

0

((
d

dt
X (t)

)2

+ V1 (X (t))

)
dt

))

If we impose some initial and final conditions, X and X on the path, we can also write, as in the first section, the
probability of transition from X to X:

P
(
X,X, T

)
= exp

(
−
∫ X(T )=X

X(0)=X

(
1

2

(
d

dt
X (t)

)2

+ V1 (X (t))

)
dt

)
DX (t) (79)

where K (X (t)) is a ”potential term” whose form depends explicitly on the agent’s utility function, or any other
intertemporal function the agent optimizes. It represents the probability for an agent to reach X starting from X
during the time span T . It is the probability of social mobility - moving from point X to X - for an agent in the
social space. Written under this form, the probability transition (79) is given by a path integral: The weight in the
exponential includes a random, brownian motion, plus a potential V1 (X (t)) describing the individual goals as well
as social/economical influences. It can be seen as an intertemporal utility whose optimization would yield the usual
brownian noise plus some external determinants. As explained before, we have to compute the Laplace transform
(27) of P

(
X,X, T

)
:

Gα
(
X,X

)
=

∫ ∞
0

exp (−αt)Pt
(
X,X

)
dt (80)

To do so, it is straightforward to check that (see Kleinert 1989 for example) Pt
(
X,X

)
satisfies a partial differential

equation:
∂

∂t
Pt
(
X,X

)
=

(
1

2
∇2
X − V1 (X)

)
P
(
X,X, s

)
and that, as a consequence, its Laplace transform Gα

(
X,X

)
satisfies:(

−1

2
∇2 + α+ V1 (X)

)
Gα
(
X,X

)
= δ

(
X −X

)
(81)

where δ
(
X −X

)
denotes the Dirac function. The solution of equation (81) is the resolvent, or the kernel, of the

operator:

L = −1

2
∇2 + α+ V1 (X)

Introducing N identical agents without interaction is straightforward. Without interaction, the agents are indpendent
and as a consequence, the probability transition is a the product of individual probability transitions:

Pt1,...,tn
(
X,X, T

)
= Pt1

(
X1, X1

)
...PtN

(
XN , XN

)
and the same applies for their Laplace transform:

Gα
(
X,X

)
=

∫ ∞
0

exp (−α (t1 + ...+ tN ))Pt1
(
X1, X1

)
...PtN

(
XN , XN

)
dt1...dtn (82)

= Gα
(
X1, X1

)
...Gα

(
XN , XN

)
From now on, in order to alleviate the notation, we will denote xi and yi the inital and final state for agent i (in the
case of a single agent, we will simply use x and y). The transition probability for N agents will thus be written:

N∏
i=1

Gα (xi, yi)
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We will write Gα
(
(xi, yi)N

)
the probability of transition for N agents.

As explained in the first section, the field theory allows to express the product in (82) as derivatives of a single
function. To do so we consider (81). We can actually infer from (81) that the determinant of the integral operator
Gα whose kernel is Gα

(
X,X

)
can be expressed as an infinite dimensional integral:

(det (Gα))−1 =

∫
exp

(
−
∫

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) dx

)
DΨDΨ† (83)

where the integrals over Ψ (x) and Ψ† (x) are performed over the space of complex-valued functions of one variable
x living in the same space as X and X, the initial and final states of one single agent. The function Ψ† (x) is the
complex conjugate of Ψ (x). These functions are the fields introduced in section 1.

The formula (83) is simply the generalization in infinite dimension of the gaussian integral formula:

(det (M))−1 =

∫
exp

(
−X (M)X†

)
DXDX†

for X a vector of CN , X† it’s complex conjugate, and M an invertible linear operator on CN , i.e. an invertible matrix.
To recover (82) from (83), one introduces the source term J (x) Ψ† (x) + J† (x) Ψ (x) defined in section 2. We claim
that: ∫

exp
(
−
∫(

Ψ (x)
(
− 1

2
∇2 + α+K (x)

)
Ψ† (x) + J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx
)
DΨDΨ†∫

exp
((
−
∫(

Ψ (x)
(
− 1

2
∇2 + α+K (x)

)
Ψ† (x)

)
dx
))
DΨDΨ†

(84)

= exp

(∫
J (x)

(
−1

2
∇2 + α+K (x)

)−1

J† (x) dx

)

= exp

(∫
J (x)Gα (x, y) J† (x) dx

)
This results directly from (84) by changing the variable Ψ (x) → Ψ (x) + J (x) in the numerator and using (83). As
a consequence, the terms in (82) can be recovered from (84). Actually, the transition function for N agents (84):

N∏
i=1

Gα (xi, yi) (85)

can directly be written as:

N∏
i=1

Gα (xi, yi) =

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)
exp

(
J (x)Gα (x, y) J† (x)

)]
J=J†=0

Consequently, we now have an infinite dimensional integral representation for the transition functions for N agents:

N∏
i=1

Gα (xi, yi, α) =
1∫

exp
((
−
∫(

Ψ (x)
(
− 1

2
∇2 + α+K (x)

)
Ψ† (x)

)
dx
))
DΨDΨ†

(86)

×
[(

δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]
J=J†=0

.

∫
exp

(
−
∫ (

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) + J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

)
DΨDΨ†

The normalization factor

1∫
exp

((
−
∫(

Ψ (x)
(
− 1

2
∇2 + α+K (x)

)
Ψ† (x)

)
dx
))
DΨDΨ†

= det

(
−1

2
∇2 + α+K (x)

)−1

is constant and will thus be - whenever possible - omitted in the formula. Thus, the transition functions associated
to (79) are computed by taking the derivatives with respect to J (x) and J† (x) of∫

exp

(
−
∫ (

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) + J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

)
DΨDΨ†

The source term is usually implied and only reintroduced ultimately, at the end of the computations. As a consequence,∫
exp

(
−
∫ (

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x)

)
dx

)
DΨDΨ† (87)
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will describe the same system of identical non interacting agents whose probabilistic description is (79).
We can now consider the case of interacting agents, which means including a potential term involving k agents

as in (23): ∑
i1,...,ik

∫ T1

0

...

∫ Tn

0

Vk
(
X(i1)
s1 , ..., X(ik)

sk

)
ds1...dsk

Where we set θ = 1 and each agent having its own lifespan Ti. We explain how to translate our probabilistic formalism
in a field description similar to (86), and including the interactions.

To do so, we introduce the so called Grand Partition Function for an infinite set of interacting individual agents
associated to the partition function (23):

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

)
(88)

−
∑
i1,...ik

∫ Xi(s)=yi

Xi(0)=xi

Vk (Xi1 (t1) ...Xik (tk)) dt1...dtk


Compared to (23), two differences arise.

First, the number of agents is variale. This is in line with our description of the field formalism in section 2. We
do not focus on a fixed number of agents, but rather on the interaction of several agents among a set of an infinite
number of agents. The number N of agents involved in the interaction process can be variable, eventhough very
large, and this is why we sum over N expressions similar to (23). The N ! reflects the fact that agents are identical
in that context and is here to avoid redundancies in the sum over agents.

Second, the lifespan of the agents is different from one agent to another. As explained in section one we assume
this lifespan to be a random Poisson process of average 1

α
and we take the average over this process for all agents.

This the reason for the Laplace transform.

As explained above, without interactions, the transition probabilities associated to (88) can be computed with the
formalism defined by (87). To include the interaction part, we will now consider the potential V1 (Xi (t)) as a source
term. To do so, we follow the presentation of (Kleinert 1989). Starting with the simplest case of no interaction, i.e.
Vk (X1 (t1) ...Xk (tk)) = 0, the function of interest to us is:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))
(89)

Each of these integrals being independent from each others, the results for (89) is:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))
=
∑
N

1

N !

N∏
i=1

Gα (xi, yi)

(90)

which is a mixed sum over N of transition functions for N agents. Each product 1
N !

N∏
i=1

GK (xi, yi, α) computes, as

needed, the transition probability from {xi}i=1...N to {yi}i=1...N for N ordered agents during a process of mean
duration 1

α
. Thus the sum can be seen as a generating series for these probabilities with N agents. However, between

identical agents, order is irrelevant, so that the probability of transition of the system from {xi}i=1...N to {yi}i=1...N

is the sum over the permutations with N elements of the terms on (90) rhs. Since these terms are equal, the ”true”

probability of transition is
N∏
i=1

GK (xi, yi, α). The whole problem at stake is to recover the case with interaction (88)

from the ”free” case (89). This is done using the following method. Using the functional derivative with respect to
V1 (xi1) we write:

δ

δV1 (xi1)

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))

=
∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))

×

{
−
∑
i

∫ Xi1(ti1)=yi1

Xi1 (0)=xi1

dtδ (Xi1 (t)− xi1)

}
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where δ (xi1 (t)− xi1) is the delta of Dirac function. By extension, this generalizes for any function V (xi1), to yield:∫
dxi1V (xi1)

δ

δV1 (xi1)

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

×
∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))

= =
∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))

×

{
−
∑
i

∫ Xi1(ti1)=yi1

Xi1 (0)=xi1

dtV (Xi1 (t))

}

and for any function of several variables, one has similarly:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))
(91)

×
∑
i1,...ik

∫ Xi1(ti1)=yi1

Xi1 (0)=xi1

...

∫ Xik (tik )=yik

Xik
(0)=xik

Vk (Xi1 (tk) ...Xik (tk)) dt1...dtk

=
∑
i1,...ik

{
(−1)k

∫
dxi1 ...dxikVk (xi1 ...xik )

δ

δV1 (xi1)
...

δ

δV1 (xik )

}

×
∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

))

To find (88) from (89), the next step is to exponentiate (91) to express (88) as:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

)

−
∑
i1,...ik

∫ Xi(s)=yi

Xi(0)=xi

Vk (Xi1 (t1) ...Xik (tk)) dt1...dtk


= exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik )

δ

δV1 (xi1)
...

δ

δV1 (xik )

)
×
∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

)

In other words, using (90) one finds the partition function for the system of agents in interaction:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

)
(92)

−
∑
i1,...ik

∫ Xi(s)=yi

Xi(0)=xi

Vk (Xi1 (t1) ...Xik (tk)) dt1...dtk


= exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik )

δ

δV1 (xi1)
...

δ

δK (xik )

)
K≡0

×
∑
N

1

N !

N∏
i=1

Gα (xi, yi)

We can now find the field formulation associated to (92). We have seen that (see (86)):

N∏
i=1

Gα (xi, yi, α) = det

(
−1

2
∇2 + α+K (x)

)−1

×
[(

δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]
J=J†=0

.×
∫

exp

(
−
∫ (

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) + J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

)
DΨDΨ†
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so that, discarding the constant factor det
(
− 1

2
∇2 + α+K (x)

)−1
, one has:

∑
N

1

N !

N∏
i=1

∫
exp (−αti)

∫
DXi (t) exp

(
−
∑
i

∫ Xi(ti)=yi

Xi(0)=xi

((
1

2

(
d

dt
Xi (t)

)2

+ V1 (Xi (t))

)
dt

)

−
∑
i1,...ik

∫ Xi(s)=yi

Xi(0)=xi

Vk (Xi1 (t1) ...Xik (tk)) dt1...dtk


= exp

(
−
∫
dxi1 ...dxikVk (xi1 ...xik )

δ

δV1 (xi1)
...

δ

δK (xik )

)
K≡0

×
[(

δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]
J=J†=0

×
∫

exp

(
−
∫ (

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) + J (x) Ψ† (x) + J† (x) Ψ (x)

)
dx

)
DΨDΨ†

and this quantity is equal to:[(
δ

δJ (xi1)

δ

δJ† (xi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (xiN )

)]
J=J†=0

×
∫

exp

(
−
∫

Ψ (x)

(
−1

2
∇2 + α+ V1 (x)

)
Ψ† (x) dx−

∫
J (x) Ψ† (x) + J† (x) Ψ (x) dx

−
∑
i1,...ik

∫
Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...xik

DΨDΨ†

In other word, the probabilitic description (88) of a large number of interacting agents is encompassed in the path
integral: ∫

exp

(
−
∫

Ψ (x)

(
−1

2
∇2 + α+ V1 (x)

)
Ψ† (x) dx−

∫
J (x) Ψ† (x) + J† (x) Ψ (x) dx

−
∑
i1,...ik

∫
Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...xik

DΨDΨ†

The functional:

S (Ψ, J) =

∫
Ψ (x)

(
−1

2
∇2 + α+ V1 (x)

)
Ψ† (x) dx

+
∑
i1,...ik

∫
Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...xik +

∫
J (x) Ψ† (x) + J† (x) Ψ (x) dx

is a particular case of a field action functional with source as defined in section 2. It is straightforward to generalize
this formula for any type of potential involving an arbitrary number of agents by introducing over k yielding an
action:

S (Ψ, J) =

∫
Ψ (x)

(
−1

2
∇2 + α+ V1 (x)

)
Ψ† (x) dx

+
∑
k>2

∑
i1,...ik

∫
Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...xik +

∫
J (x) Ψ† (x) + J† (x) Ψ (x) dx

As a consequence:∫
exp

(
−
∫

Ψ (x)

(
−1

2
∇2 + α+ V1 (x)

)
Ψ† (x) dx (93)

−
∑
k>2

∑
i1,...ik

∫
Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) dxi1 ...xik +

∫
J (x) Ψ† (x) + J† (x) Ψ (x) dx

DΨDΨ†

computes, by successive derivatives with respect to J (x) and J† (x), the transition functions of a system of infinite
number of identical agents, with arbitrary, non local in time, interactions Vk (Xi1 (t1) ...Xik (tk)) involving k agents,
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with k arbitrary. The constant α is the characteristic scale of the interaction process, and 1
α

the mean duration of
the interaction process, or alternately the mean lifespan of the agents. The transition functions are given by:

GK ({xi} , {yi} , α) (94)

=

[(
δ

δJ (xi1)

δ

δJ† (yi1)

)
...

(
δ

δJ (xiN )

δ

δJ† (yiN )

)∫
exp

(
−Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x)

−
∑
k>2

∑
i1,...ik

Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik ) + J (x) Ψ† (x) + J† (x) Ψ (x)

DΨDΨ†


J=J†=0

and GK ({xi} , {yi} , α) is the probability of transition for N agents from a state {xi} to a state {yi}. Remark that
this formulation realizes what was announced before. The switch in formulation induces that the transition of the
agents, i.e. their dynamical and stochastic properties, takes place in a surrounding. Instead of computing directly
the dynamic of the system, we derive this behavior from the global properties of a substratum, the global action for
the field Ψ (x). By global action we denote the functional, or action:

S (Ψ) =

∫
dx

Ψ (x)

(
−1

2
∇2 + α+K (x)

)
Ψ† (x) +

A∑
k>2

∑
i1,...ik

Ψ (xi1) ...Ψ (xik )Vk (xi1 ...xik ) Ψ† (xi1) ...Ψ† (xik )


Appendix 5

We start with the statistical weight associated to the intertemporal budget constraint:

exp

(
−
∑
s

1

$2

(
Cs − C̄ −

Cs+1

(1 + r)

)2

+
∑
s

C0

)
exp

−
(∫ T

0
(Yi (s)− Ci (s)) exp

(
−
∫
ri (s) ds

)
ds
)2

θ2


' exp

(
−
∑
s

(Cs+1 − Cs − rCs+1)2

$2
+
∑
s

C0

)
exp

−
(∫ T

0
(Yi (s)− Ci (s)) exp

(
−
∫
ri (s) ds

)
ds
)2

θ2


with C0 ≡ 1

2σ$2 . Now, remark that the budgt constraint:∫
(Yi (s)− Cs) exp (−rs) ds = 0

can be expressed as: ∫ (
K̇i (s) + ε (s)

)
exp (−rs) ds = 0

or as: ∫
K̇i (s) exp (−rs) ds = −

∫
ε (s) exp (−rs) ds

The last term has variance ν2

2r
which implies that the overall constraint can be included in the global weight through

a term:
2r̄

ν2

(∫
K̇i (s) exp (−rs) ds

)2

with:

r̄ =
1∫

exp (−rs) ds∫
K̇i (s) exp (−rs) ds = [Ki (s) exp (−rs)]T0 +

∫
rKi (s) exp (−rs) ds

= −Ki (0) +

∫
rKi (s) exp (−rs) ds

if the transversality condition is satisfied. At the lowest order in r̄ or r, the contribution is approximated by Ki (0)
and can be neglected. We end up with a contribution:

exp

(
−
∑
s

1

$2

(
Cs − C̄ −

(Cs+1)

(1 + r)

)2

+
∑
s

C0

)
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or in continuous time:

exp

−∫ ds

(
Ċs − rCs + C̄

)2

$2
+ C0

∫
ds


Appendix 6

Business cycle model, field theoretic representation

The field theoretic equivalent of (42) is obtained by the same methods we used previously. One obtains the following
action for the field:

S (Ψ) = Ψ† (K,C,A)

−∇.
 ν2 0 0

0 $2 0
0 0 1

λ2

∇+ 2

 −AF (K) + C + δ (K)
− (AF ′ (K) + rc)C + C̄

0


+ς2

(
C − C̄

)2
+
(
Ai − Ā

)2
+
(
− (AF (K)− δ (K))′ −AF ′ (K)− rc

)
+ α− C0

)
Ψ (K,C,A)

+γΨ† (K1, C1, A1) Ψ† (K2, C2, A2) {A2H (K1,K2)K1}Ψ (K1, C1, A1) Ψ (K2, C2, A2)

=

∫
Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
+ ς2

(
C − C̄

)2
+
(
Ai − Ā

)2 − ν2 ∂2

∂K2

+

(
−2 (C −AF (K) + δ (K))

∂

∂K
+ 2

(
AF ′ (K) + rc

) (
C − C̄

) ∂

∂C
+ 2

∂

∂K
(AF (K)− δ (K))

)
+2
(
AF ′ (K) + rc

)}
Ψ (K,C,A)

+

∫
Ψ† (K,C,A)

(
−
(

∂

∂K
(AF (K)− δ (K))

)
−
(
AF ′ (K) + rc

)
+ α− C0

)
Ψ (K,C,A)

+γ
1

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2) {A2H (K1,K2)K1 +A1H (K2,K1)K2}Ψ (K1, C1, A1) Ψ (K2, C2, A2)

Let δ (K) = δK as usually assumed. The previous expression simplifies as:

S (Ψ) =

∫
Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2 (C −AF (K) + δK)
∂

∂K

+2
(
AF ′ (K) + rc

) (
C − C̄

) ∂

∂C
+ ς2

(
C − C̄

)2}
Ψ (K,C,A)

+

∫
Ψ† (K,C,A)

(
α+ 2AF ′ (K) + (rc − δ)− C0

)
Ψ (K,C,A)

+γ
1

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2) {A2H (K1,K2)K1 +A1H (K2,K1)K2}Ψ (K1, C1, A1) Ψ (K2, C2, A2)

If we consider that the rate (AF ′ (K) + rc) is slowly varying, as an interest rate, we can perform a change of variable:

Ψ (K,C,A) = exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2)
Ψ̂ (K,C,A)

Ψ̂† (K,C,A) = exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2)
Ψ̂ (K,C,A)

and rewrite the action as a function of Ψ̂:

S
(

Ψ̂
)

=

∫
Ψ̂† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2 (C −AF (K) + δK)
∂

∂K

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+ α− C0 +AF ′ (K)− δ

}
Ψ̂ (K,C,A)

+γ
1

2

∫
Ψ̂† (K1, C1, A1) Ψ̂† (K2, C2, A2) {A2H (K1,K2)K1 +A1H (K2,K1)K2} Ψ̂ (K1, C1, A1) Ψ̂ (K2, C2, A2)

Then, a change of variable
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K′ = C −AF (K) + δK

∂

∂K
=

(
δ −AF ′ (K)

) ∂

∂K′

associated also with the assumption that the rate δ−AF ′ (K) slowly varying, as well as a rescaling C̄
(AF ′(K)+rc)

→ C̄
leads to:

S
(

Ψ̂
)

=

∫
Ψ̂†
(
K′, C,A

){
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2 − 2
(
δ −AF ′ (K)

)
K′

∂

∂K′

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+ α− C0 +AF ′ (K)− δ

}
Ψ̂
(
K′, C,A

)
+γ

1

2

∫
Ψ̂†
(
K′1, C1, A1

)
Ψ̂†
(
K′2, C2, A2

)
{A2H (K1,K2)K1 +A1H (K2,K1)K2} Ψ̂

(
K′1, C1, A1

)
Ψ̂
(
K′2, C2, A2

)
Ultimately, one can recast the action in a tractable form through a second rescaling of the field:

Ψ̂
(
K′, C,A

)
= exp

(
− (K′)

2

2ν2 (δ −AF ′ (K))

)
Ψ̄
(
K′, C,A

)
Ψ̂†
(
K′, C,A

)
= exp

(
(K′)

2

2ν2 (δ −AF ′ (K))

)
Ψ̄
(
K′, C,A

)
and thus:

S
(
Ψ̄
)

=

∫
Ψ̄†
(
K′, C,A

){
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ̄
(
K′, C,A

)
+γ

1

2

∫
Ψ̄†
(
K′1, C1, A1

)
Ψ̄†
(
K′2, C2, A2

)
{A2H (K1,K2)K1 +A1H (K2,K1)K2} Ψ̄

(
K′1, C1, A1

)
Ψ̄
(
K′2, C2, A2

)
The relation between Ψ (K,C,A) and Ψ̄ (K′, C,A)

Ψ (K,C,A) = exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2)
exp

(
− (K′)

2

2ν2 (δ −AF ′ (K))

)
Ψ̄
(
K′, C,A

)
Ψ† (K,C,A) = exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2)
exp

(
(K′)

2

2ν2 (δ −AF ′ (K))

)
Ψ̄†
(
K′, C,A

)
implies at first sight that Ψ̄ (K′, C,A) and Ψ̄† (K′, C,A) are not complex conjugate. This is the consequence from the
fact that the operator involved in the definition of S (Ψ) is not hermitian, or self adjoint in the real interpretation.
This non hermiticity is itself the consequence of an asymmetry in the transition functions: due to a drift term, the
transition probability between two points is not symmetric. However, one can make sense of the partition function:∫

exp
(
−S

(
Ψ̄
))
D	̄DΨ̄† (95)

and show that it computes the same partition function as:∫
exp (−S (Ψ))D	DΨ† (96)

To do so, we first define:

L = −$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2 (C −AF (K) + δK)
∂

∂K
+ 2

(
AF ′ (K) + rc

)(
C − C̄

) ∂

∂C

+ς2
(
C − C̄

)2
+ α− C0

L′ = −$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0
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and then:
Ψ† (K,C,A)LΨ (K,C,A) = Ψ̄†

(
K′, C,A

)
L′Ψ̄

(
K′, C,A

)
so that:

L′ = exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2
+

(K′)
2

2ν2 (δ −AF ′ (K))

)

×L exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2 − (K′)
2

2ν2 (δ −AF ′ (K))

)

Then, to make sense of the partition function (95), we will compare it to the computation of (96). To do so, recall
that the partition function for γ = 0, that is (96), is defined as det

(
L−1

)
and that this quantities is computed via

the eigenvalues of L:

detL−1 =
∏
n

dxndyn exp (−xnλnxn − ynλnyn)

This expression makes sense since the eigenvalues of operator L have positive real part. Let αn = xn + iyn and
α†n = xn − iyn, detL−1 rewrites:

detL−1 =
∏
n

dαndα
†
n exp

(
α†nλnαn

)
This expression is real, since L is a real operator, and if λn is an eigenvalue of L, so is λ̄n. Consider the expansion
of Ψ (K,C,A):

Ψ (K,C,A) =
∑

αnΨn (K,C,A)

where Ψn (K,C,A) are eigenfunctions for λn of L, then, define Ψ† (K,C,A) as:

Ψ† (K,C,A) =
∑

α†nΨ†n (K,C,A) (97)

where Ψ†n (K,C,A), eigenfunctions for λn of the adjoint L+, and
〈
Ψ†m (K,C,A) ,Ψn (K,C,A)

〉
= δm,n.

As a consequence, the partition function rewrites:

detL−1 = exp (−S (Ψ))D	DΨ†

This is (96), but the field Ψ† is not the complex conjugate of 	, and has rather to be understood as given by the
expansion (97). Now, focusing on (95), consider the transformed eigenfunctions:

Ψ̄n

(
K′, C,A

)
= exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2
+

(K′)
2

2ν2 (δ −AF ′ (K))

)
Ψn (K,C,A)

that are eigenfunctions of L′ for eigenvalues λn. Actually:

L′Ψ̄n

(
K′, C,A

)
= exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2
+

(K′)
2

2ν2 (δ −AF ′ (K))

)
LΨn (K,C,A) (98)

= λnΨ̄n

(
K′, C,A

)
Moreover, we define:

Ψ̄†n
(
K′, C,A

)
= exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2 − (K′)
2

2ν2 (δ −AF ′ (K))

)
Ψ†n (K,C,A)

the eigenfunction of (L′)
+

for λn. The functions Ψ̄n (K′, C,A) and Ψ̄n (K′, C,A) are orthogonal :〈
Ψ̄†m (K,C,A) , Ψ̄n (K,C,A)

〉
=
〈

Ψ†m (K,C,A) ,Ψn (K,C,A)
〉

= δm,n (99)

as a direct consequence of:

(
L′
)+

= exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2 − (K′)
2

2ν2 (δ −AF ′ (K))

)
L+

× exp

(
− 1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2
+

(K′)
2

2ν2 (δ −AF ′ (K))

)
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and

(
L′
)+

Ψ̄†n
(
K′, C,A

)
= exp

(
1

2$2

(
AF ′ (K) + rc

)(
C − C̄

)2 − (K′)
2

2ν2 (δ −AF ′ (K))

)
L+Ψ†n (K,C,A)

= λnΨ̄†n
(
K′, C,A

)
since these two relations imply:∫

Ψ̄†
(
K′, C,A

){
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ̄
(
K′, C,A

)
=

∫
Ψ̄†
(
K′, C,A

)
L′Ψ̄

(
K′, C,A

)
=

∫ ∑
α†mΨ̄†m

(
K′, C,A

)
λnαnΨ̄n (K,C,A)

=

∫ ∑
αmλnα

†
n

=

∫ ∑
α†mΨ†m (K,C,A)λnαnΨn (K,C,A)

=

∫
Ψ† (K,C,A)LΨ (K,C,A)

As a consequence of (98) and (99),∫
D	†DΨ exp

(
−
∫

Ψ† (K,C,A)LΨ (K,C,A)

)
and ∫

D	̄DΨ̄ exp

(
−
∫

Ψ̄†
(
K′, C,A

)
L′Ψ̄

(
K′, C,A

))
compute the same partition function. We can thus consider the following action:

S
(
Ψ̄
)

=

∫
Ψ̄†
(
K′, C,A

){
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
(100)

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ̄
(
K′, C,A

)
+γ

1

2

∫
Ψ̄†
(
K′1, C1, A1

)
Ψ̄†
(
K′2, C2, A2

)
{A2H (K1,K2)K1 +A1H (K2,K1)K2} Ψ̄

(
K′1, C1, A1

)
Ψ̄
(
K′2, C2, A2

)
as stated in the text.

Existence of a saddle point

We first set H (K2,K) = 1, and Ā = A0 +κ 〈A〉 with κ < 1 to simplify the computations, but any function H (K2,K)
could be considered. Before considering the saddle point equation, we can note that for γ < 0, no minimum can exist
for S

(
Ψ̄
)
. Actually, for γ < 0, the quartic term:

γ
1

2

∫
Ψ̄†
(
K′1, C1, A1

)
Ψ̄†
(
K′2, C2, A2

)
{A2K1 +A1K2} Ψ̄

(
K′1, C1, A1

)
Ψ̄
(
K′2, C2, A2

)
is negative, and if we let

∥∥Ψ̄ (K′1, C1, A1)
∥∥ → ∞, then this term dominates, so that S

(
Ψ̄
)
→ −∞. Thus, to inspect

the possiblity of a minimum for S
(
Ψ̄
)

we have to consider γ > 0. The saddle point equation is:{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ1 (K,C,A)

+γη
(
Γ′2A+ Γ3K

)
Ψ1 (K,C,A) = 0
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where: ∫
Ψ†1 (K2, C2, A2)K2Ψ1 (K2, C2, A2) = Γ′2∫
Ψ†1 (K2, C2, A2)A2Ψ1 (K2, C2, A2) = Γ3

g−1 (K) = K − A

δ
F (K)

The term 2
(
Ā− Γ3

)
κA comes from variation of Ā = A0+κ

∫
Ψ̄† (K′, C,A)AΨ̄ (K′, C,A). We impose ‖Ψ1 (K,C,A)‖ =

1, so that Ψ (K,C,A) =
√
ηΨ1 (K,C,A). We can also replace K with K′ through the relation:

K′ = C −AF (K) + δK ≡ δg−1 (K) + C

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA (101)

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ1 (K,C,A)

+γη

(
Γ′2A+ Γ3

(
g

(
K′ − C

δ

)))
Ψ1 (K,C,A) = 0

For the usual form F (K) = Kε, with ε < 1,

g−1 (K) = K

(
1− A

δK1−ε

)
and above a minimal level K̄:

AK

δK1−ε ' AK̄ε

δ

(
1 + ε

(
K − K̄
K̄

)
− ε (1− ε)

2

(
K − K̄
K̄

)2
)

' AK̄ε

δ

(
1 + ε

(
K − K̄
K̄

))
and:

g−1 (K) ' K − AK̄ε

δ

(
1 + ε

(
K − K̄
K̄

))
so that:

K = g

(
K′ − C

δ

)
=

(K′ − C) +AK̄ε (1− ε)− A
2
ε (1− ε) K̄ε−2

δ −AεK̄ε−1

C +
(
δ −AεK̄ε−1)(εA

δ

) 1
1−ε
−AK̄ε (1− ε) < K′C −AK̄ε (1− ε)

A >
δK̄1−ε

ε

For this particular form of production function, (101) is then:

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA (102)

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ1 (K,C,A)

+γη

(
Γ′2A+ Γ3

(K′ − C) +AK̄ε (1− ε)
δ −AεK̄ε−1

)
Ψ1 (K,C,A) = 0

where:

Γ1 = 〈C〉 , Γ2 =
〈
K′
〉

, Γ3 = 〈A〉

Γ′2 =

〈
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

〉
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and the brackets denotes the expectation of the quantities in the state Ψ1. The potential terms in (102):(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA+ γη

(
Γ′2A+ Γ3

(K′ − C) +AK̄ε (1− ε)
δ −AεK̄ε−1

)

'

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA+ γη

(
Γ′2A+ Γ3

(K′ − C) +AK̄ε (1− ε)
δ − Γ3εK̄ε−1

)
with

Γ′2 =

〈
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

〉
' (Γ2 − Γ1) + K̄ε (1− ε) Γ3

δ − Γ3εK̄ε−1

and the potential terms are then:

V =

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+
(
A−

(
(1− κ) Ā+ κΓ3

))2
+γη

(
(Γ2 − Γ1) + K̄ε (1− ε) Γ3

δ − Γ3εK̄ε−1
A+ Γ3

(K′ − C) +AK̄ε (1− ε)
δ − Γ3εK̄ε−1

)
+ Ā2 −

(
(1− κ) Ā+ κΓ3

)2
and can be written in a compact form:

V =
(
t
(
X − X̂

)
Ω
(
X − X̂

)
+
(tΓ)MX

)
(103)

=

(
t

(
X − X̂ +

1

2
Ω−1MΓ

))
Ω

(
X − X̂ +

1

2
Ω−1MΓ

)
− 1

4

(tΓMΩ−1MΓ
)

+
(tΓ)MX̂

+Ā2 −
(
(1− κ) Ā+ κΓ3

)2
with:

X =

 C
K′

A

 , X̂ =

 C̄
0

(1− κ) Ā+ κΓ3

 ,Γ =

 Γ1

Γ2

Γ3

 ,Ω =


(
ς2 +

(Γ3F
′(K)+rc)

2

$2

)
0 0

0 1
ν2 0

0 0 1


M =

γη

δ − Γ3εK̄ε−1

 0 0 −1
0 0 1
−1 1 K̄ε (1− ε)


From these equations we can identify the mean values of the variables. Given that we anticipate a gaussian form for

Ψ1 (K,C,A), we have to implement several constraint. Actully, we assume that C > 0, A > 0, so that the distribution
for these variables has to be cut off for the egative values. The variable K′ on its side is also constrained by the
model and our assumptions. First, given that:

K =
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

The variable K has to be positive, so that:

K′ < C −AK̄ε (1− ε)

Moreover, we have assumed that:
δ − εA (K)ε−1 < 0

which translates in:

δ − εA
(

(K′ − C) +AK̄ε (1− ε)
δ −AεK̄ε−1

)ε−1

< 0

or equivalently:

C +
(
δ −AεK̄ε−1)(εA

δ

) 1
1−ε
−AK̄ε (1− ε) < K′

As a consequence, the domain for is bounded K′:

C +
(
δ −AεK̄ε−1)(εA

δ

) 1
1−ε
−AK̄ε (1− ε) < K′ < C −AK̄ε (1− ε)
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We will see later that the existence a non trivial phase is possible if A � 0. As a consequence, we can assume that
C −AK̄ε (1− ε) < 0 and ∣∣δ −AεK̄ε−1

∣∣ (εA
δ

) 1
1−ε

wich means that a good approximation for the domain in question is:

K′ < C −AK̄ε (1− ε)

Given these conditions on the variables, the equations for the average values can thus be written as:

Γ = X̂ − 1

2
Ω−1MΓ + X̂1 (104)

Γ =

(
1 +

1

2
Ω−1M

)−1 (
X̂ + X̂1

)

with X̂1 =

 C1

K′1
A1

.The variables C1 and A1 express the shift due to the cut off for the negative values of C and A.

C1 =

∫∞
0
X1 exp

(
− (X−X̂+ 1

2
Ω−1MΓ)2

1
2$2

)
dX1∫∞

0
exp

(
− (X−X̂+ 1

2
Ω−1MΓ)2

1
2$2

)
dX1

=

√
2

π
$

exp

(
− (X̂− 1

2
Ω−1MΓ)2

1
2$2

)
1− erf

(
(X̂− 1

2
Ω−1MΓ)

1√
2$

) (105)

A1 =

∫∞
0
X2 exp

(
−
λ(X−X̂+ 1

2
Ω−1MΓ)2

2
2

)
dX2∫∞

0
exp

(
−
λ(X−X̂+ 1

2
Ω−1MΓ)2

2
2

)
dX2

=
2√
πλ

exp

(
−
λ(X̂− 1

2
Ω−1MΓ)2

3
2

)
1− erf

(√
λ(X̂− 1

2
Ω−1MΓ)

3√
2

) (106)

whereas K′1 expresses the shift due to the superior bound for K′:

K′1 =

∫ C−AK̄ε(1−ε)
−∞ X3 exp

(
− (X−X̂+ 1

2
Ω−1MΓ)2

2

2|δ−Γ3εK̄ε−1|ν2

)
dX3∫ C−AK̄ε(1−ε)

−∞ exp

(
− (X−X̂+ 1

2
Ω−1MΓ)2

2

2|δ−Γ3εK̄ε−1|ν2

)
dX3

= −

√
2
π

√∣∣δ − Γ3εK̄ε−1
∣∣ν exp

(
−
(
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)2

2|δ−Γ3εK̄ε−1|ν2

)
(

erf

((
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)
√

2

)
+ 1

)
and this last expression can be approximated by:

K′1 ' −2ν2
∣∣δ −AεK̄ε−1

∣∣ exp

(
−
(
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)2

2|δ−Γ3εK̄ε−1|ν2

)

2− exp

(
−1.9

(
|C−AK̄ε(1−ε)|√
2ν2|δ−AεK̄ε−1|

)1.3
) (107)

For a saddle point equation written as:

0 =

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+ t

(
X − X̂ +

1

2
Ω−1MΓ

)
Ω

(
X − X̂ +

1

2
Ω−1MΓ

)
(108)

−1

4

(tΓMΩ−1MΓ
)

+
(tΓ)MX̂ +

(
Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
+ α− C0

}
Ψ1 (K,C,A)

Given that the σi have been considered relatively small for capital and technology, we can neglect the term proportional
to the exponential in (104) for these two variables. We will keep this additional contribution for C only which shift
Ĉ by 2√

2π
$ for small Ĉ.
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The constant term in (103) is thus given by:

−1

4

(tΓMΩ−1MΓ
)

+
(tΓ)MX̂ = −1

4

(tΓMΩ−1MΓ
)

+
(tΓ)M (

1 +
1

2
Ω−1M

)
Γ

=
(tΓ)(M +

1

4
MΩ−1M

)
Γ

=
(
tX̂ + X̂1

)(
1 +

1

2
MΩ−1

)−1(
M +

1

4
MΩ−1M

)(
1 +

1

2
Ω−1M

)−1 (
X̂ + X̂1

)
Equation (104) can be expressed as an equation for Γ3:

Γ3 = 2
2
(
(1− κ) Ā+ κΓ3 +A1

)
+
((
C̄ + C1

)
−K′1

)
+ αγη

4− (a+ b)α2 (γη)2 + 2αβγη
(109)

= 2
2
(
(1− κ) Ā+ κΓ3 +A1

)(
δ − Γ3εK̄

ε−1
)2

+
((
C̄ + C1

)
−K′1

)
γη
(
δ − Γ3εK̄

ε−1
)

4
(
δ − Γ3εK̄ε−1

)2 − (a+ b)(γη)2 (δ − Γ3εK̄ε−1
)

+ 2γηK̄ε (1− ε)

= 2
2 ((1− κ)A0 + (2− κ)κΓ3 +A1)

(
δ − Γ3εK̄

ε−1
)2

+
((
C̄ + C1

)
−K′1

)
γη
(
δ − Γ3εK̄

ε−1
)

4
(
δ − Γ3εK̄ε−1

)2 − (a+ b) (γη)2 (δ − Γ3εK̄ε−1
)

+ 2γηK̄ε (1− ε)

where:

a+ b =
$2

ς2$2 + (AF ′ (K) + rc)
2 + ν2 � 1

and:

α =
1

δ − Γ3εK̄ε−1
, β =

K̄ε (1− ε)
δ − Γ3εK̄ε−1

At the first order in γη, the equation rewrites:

Γ3 = 2
2 ((1− κ)A0 + (2− κ)κΓ3 +A1)

(
δ − Γ3εK̄

ε−1
)2

+
((
C̄ + C1

)
−K′1

)
γη
(
δ − Γ3εK̄

ε−1
)

4
(
δ − Γ3εK̄ε−1

)2
+ 2γηK̄ε (1− ε)

For γη � 1, we check that Γ3 ' A0
1−κ , in that case, using (106):

A1 =
2√
λ

exp

(
−
λ(X̂− 1

2
Ω−1MΓ)2

3
2

)
2− erf

(√
λ(X̂− 1

2
Ω−1MΓ)

3√
2

) ' 2√
λ

exp

−λ
(
A0

1−κ

)2

2

� 1

and A1 can be neglected, whivh leads to:

Γ3 = 2
2 ((1− κ)A0 + (2− κ)κΓ3)

(
δ − Γ3εK̄

ε−1
)2

+
((
C̄ + C1

)
−K′1

)
γη
(
δ − Γ3εK̄

ε−1
)

4
(
δ − Γ3εK̄ε−1

)2
+ 2γηK̄ε (1− ε)

We assume that
(
δ − Γ3εK̄

ε−1
)
< 0, so that the marginal productivity exceeds the depreciation rate of capital, we

see below that the solution for γη is of first order in δ − A0
(1−κ)

εK̄ε−1, which allows for a first order solution in γη to
be considered:

Γ3 =
A0

(1− κ)
− 1

2

KεA0 (1− ε)−
((
C̄ + C1

)
−K′1

)(
δ − A0

(1−κ)
εK̄ε−1

)
(1− κ)(

δ − A0
(1−κ)

εK̄ε−1
)2

(1− κ)3
γη (110)

The quantities Γ1 and Γ2 can be expressed in terms of Γ3:
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Γ1 '
4
(
C̄ + C1

)
−
(
C̄ + C1

)
bα2 (γη)2 + 2a

(
(1− κ) Ā+ κΓ3

)
αγη + 2

(
C̄ + C1

)
αβγη +

α2$2(γη)2K′1
($2ς2+(Γ3F ′(K)+rc)

2)

4− (a+ b)α2 (γη)2 + 2αβγη

=
4
(
C̄ + C1

)
−
(
C̄ + C1

)
bα2 (γη)2 + 2a

(
(1− κ) Ā+ κΓ3

)
αγη + 2

(
C̄ + C1

)
αβγη +

α2$2(γη)2K′1
($2ς2+(Γ3F ′(K)+rc)

2)

2
(
2
(
(1− κ) Ā+ κΓ3

)
+
(
C̄ + C1

)
αγη

) Γ3

Γ2 = −

(γη)2 bα2
(
C̄ + C1

)
+ 2bαγη

(
(1− κ) Ā+ κΓ3

)
−

(
4 + 2Kε (1− ε)αγη − (αγη)2(

ς2+
(Γ3F

′(K)+rc)2

$2

)
)
K′1

4− (a+ b)α2 (γη)2 + 2αβγη

= −

(γη)2 bα2
(
C̄ + C1

)
+ 2bαγη

(
(1− κ) Ā+ κΓ3

)
−

(
4 + 2Kε (1− ε)αγη − (αγη)2(

ς2+
(Γ3F

′(K)+rc)2

$2

)
)
K′1

2
(
2
(
(1− κ) Ā+ κΓ3

)
+
(
C̄ + C1

)
αγη

) Γ3

For γη 6= 0, one has at the first order in γη:

Γ1 = C̄ + C1 −
$2
(
A0

1−χ

)
2
(
ς2$2 + (AF ′ (K) + rc)

2) ∣∣δ − Γ3εK̄ε−1
∣∣γη

C1 can be found by writing (105) as:

C1 =

√
2

π
$

exp

(
− (X̂− 1

2
Ω−1MΓ)2

1
2$2

)
1− erf

(
(X̂− 1

2
Ω−1MΓ)

1√
2$

) =

√
2

π
$

exp
(
− (Γ1−C1)21

2$2

)
1− erf

(
(Γ1−C1)1√

2$

)

=

√
2

π
$

exp

(
− (C̄)2

1
2$2

)
1− erf

(
(C̄)

1√
2$

)
where we used (104). For C̄ � 1, one has:

C1 '
√

2

π
$

The value of Γ2 is computed in the same way:

Γ2 = −
2bαγη

(
(1− κ) Ā+ κΓ3

)
− (4 + 2Kε (1− ε)αγη)K′1

4 + 2αβγη

At the zeroth order in γη, it reduces to:
Γ2 = K′1

and the parameter K′1 is found by considering (107):

K′1 = −

√
2
π

√∣∣δ − Γ3εK̄ε−1
∣∣ν exp

(
−
(
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)2

2|δ−Γ3εK̄ε−1|ν2

)
(

erf

((
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)
√

2|δ−Γ3εK̄ε−1|ν2

)
+ 1

)

' −

√
2
π

√∣∣δ − Γ3εK̄ε−1
∣∣ν exp

(
− (C−AK̄ε(1−ε))2

2|δ−Γ3εK̄ε−1|ν2

)
(

erf

((
C−AK̄ε(1−ε)−(X̂− 1

2
Ω−1MΓ)

2

)
√

2

)
+ 1

)

' − 2

π

∣∣∣∣∣C̄ +

√
2

π
$ −AK̄ε (1− ε)

∣∣∣∣∣−
√

2
∣∣δ − Γ3εK̄ε−1

∣∣
√
π

ν

for
|C−AK̄ε(1−ε)|√
|δ−Γ3εK̄ε−1|ν

< 1 and using (104).
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At the first order in γη, one finds:

Γ2 = K′1 −
ν2 A0

1−χ

(
δ − Γ3εK̄

ε−1
)

+ K̄ε (1− ε)
(
1−

(
δ − Γ3εK̄

ε−1
))
K′1

2
(
δ − Γ3εK̄ε−1

)2 γη

These expressions allow to find the expectation value of K in the state Ψ1:

〈K〉 =

〈
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

〉
' (Γ2 − Γ1) + Γ3K̄

ε (1− ε)
δ − Γ3εK̄ε−1

=

(
Γ2 −

(
C̄ + 2$

))
+ Γ3K̄

ε (1− ε)
δ − Γ3εK̄ε−1

which expands, at first order in γη, as:

〈K〉 = −
x−Kε A0

1−κ (1− ε)
Y

− 1

2
Kε (KεA0 (1− ε)− Y (1− κ)x)

εx−Kδ (1− ε)
Y 4K (1− κ)3 zγη

− K̄
ε (1− ε)(1− Y )K′1

2Y 3
γη −

ν2 A0
1−χ

2Y 2
γη −

$2
(
A0

1−χ

)
2
(
ς2$2 + (AF ′ (K) + rc)

2)Y 2
γη

where:

Y =
(
δ − Γ3εK̄

ε−1)
x = C̄ +

√
2

π
$ −K′1

One can also compare the average production 〈Y 〉 = 〈A〉 〈K〉 in both phases. For γη = 0:

〈Y 〉0 =
A0

1− κ

x−Kε A0
1−κ (1− ε)∣∣∣δ −Kε−1ε A0

1−κ

∣∣∣
ε

For γη = 0, neglecting the terms proportional to ν2 and $2, one finds:

〈Y 〉1 <
A0

1− κ

x−Kε A0
1−κ (1− ε)∣∣∣δ −Kε−1ε A0

1−κ

∣∣∣
ε

− (KεA0 (1− ε)− Y x (1− κ))

2Y 2 (1− κ)3

(
1− r̄

r̄ − δ

(
ε+

(1− ε) K̄
〈K〉

))x−Kε A0
1−κ (1− ε)∣∣∣δ −Kε−1ε A0

1−κ

∣∣∣
ε

γη

with:

r̄ =
εKεA0

1− κ
For a minimal stock of capital lower than the average one, one has K̄

〈K〉 � 1 and r̄ � δ since for the minimal capital
stock, the marginal productivity exceeds the depreciation rate to allow accumulation. As a consequence:

1− r̄

r̄ − δ

(
ε+

(1− ε) K̄
〈K〉

)
' 1− ε

(
1 +

δ

r̄

)
> 0

for usual values of ε, ε - 0.3. As a consequence 〈Y 〉1 < 〈Y 〉0 in most cases.

For the rest of the section, we redefine C̄ +
√

2
π
$ −K′1 → C̄. The previous results lead then to the quadratic

term in (102): (
tX̂
)(

1 +
1

2
MΩ−1

)−1(
M +

1

4
MΩ−1M

)(
1 +

1

2
Ω−1M

)−1

X̂

= −
4γη

(
δ − Γ3εK̄

ε−1
)(

2
(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)(
(1− κ) Ā+ κΓ3

)
C̄ +

(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 3

)
C̄2
)

4
(
γηK̄ε (1− ε) + 2

(
δ − Γ3εK̄ε−1

))2
+

4γη
(
δ − Γ3εK̄

ε−1
)( γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)(
(1− κ) Ā+ κΓ3

)2
4
(
γηK̄ε (1− ε) + 2

(
δ − Γ3εK̄ε−1

))2
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Gathering the equation for Γ3, and the condition for the cancellation of the denominator leads to the system:

γηK̄ε (1− ε) + 2
(
δ − Γ3εK̄

ε−1) = 0

Γ3 =
2 ((1− κ)A0 + (2− κ)κΓ3)

(
δ − Γ3εK̄

ε−1
)2

+ C̄γη
(
δ − Γ3εK̄

ε−1
)

2
(
δ − Γ3εK̄ε−1

)2 − (a+ b)(γη)2 (δ − Γ3εK̄ε−1
)

+ γηK̄ε (1− ε)

2δ + xK̄ε (1− ε)
2εK̄ε−1

= 2
2
(

(1− κ)A0 + (2− κ)κ 2δ+xK̄ε(1−ε)
2εK̄ε−1

)(
x K̄

ε(1−ε)
2

)2

− C̄x2 K̄
ε(1−ε)

2

4
(
x K̄

ε(1−ε)
2

)2

+ (a+ b)x3 K̄
ε(1−ε)

2
+ 2xK̄ε (1− ε)

which has no solution, and thus the potential is defined for all γη. The solution Γ3 for γη →∞ has the asymptotic
form:

Γ3 = cγη

with constant c satisfying:

c =
(2− κ)κεK̄ε−1c2

(a+ b)

so that:

Γ3 =
(a+ b) K̄1−ε

(2− κ)κε
γη

The term δ − Γ3εK̄
ε−1 cancels at γη � 1, for:

γη → δ (2− κ)κ
a+ b

� 1

Γ3− →
δ

εK̄ε−1

and our approximations are no more valid above these values. For γη → δ(2−κ)κ
a+b

, one finds:

−
4γη

(
2
(
γηK̄ε (1− ε)

)(
(1− κ) Ā+ κΓ3

)
C̄ +

(
γηK̄ε (1− ε)

)
C̄2 −

(
γηK̄ε (1− ε)

) (
(1− κ) Ā+ κΓ3

)2)
4
(
γηK̄ε (1− ε)

)2
=

((
(1− κ) Ā+ κΓ3

)2 − 2C̄
(
(1− κ) Ā+ κΓ3

)
− C̄2

)
(1− ε)Kε

If
(
(1− κ) Ā+ κΓ3

)2 − 2C
(
(1− κ) Ā+ κΓ3

)
− C2 > 0, i.e. for:

(1− κ)A0 + (2− κ)κΓ3 >
(

1 +
√

2
)
C̄

that is:

A0 >

(
1 +
√

2
)
C̄ − (2−κ)κδ

ε
K̄1−ε

1− κ
then:

0 =
(
tX̂
)(

1 +
1

2
MΩ−1

)−1(
M +

1

4
MΩ−1M

)(
1 +

1

2
Ω−1M

)−1

X̂ (0)

<
(
tX̂
)(

1 +
1

2
MΩ−1

)−1(
M +

1

4
MΩ−1M

)(
1 +

1

2
Ω−1M

)−1

X̂

(
δ (2− κ)κ
a+ b

)
Equation (??) has solutions of the type:

Ψn1,n2,n3 = Hn1 ((C − Γ1)) exp

−
(√

ς2

$2 + (r̂+rc)
2

$4

)
(C − Γ1)2

2


×Hn2 (A− Γ3) exp

(
−λ (A− Γ3)2

2

)
Hn3

(
K′ − Γ2

)
exp

(
− (K′ − Γ2)

2

2
∣∣δ − Γ3εK̄ε−1

∣∣ ν2

)
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with r̂ defined by:

r̂ + rc '

〈
εA

(
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

)ε−1
〉

+ rc ' εΓ3

(
(Γ2 − Γ1) + K̄ε (1− ε) Γ3

δ − Γ3εK̄ε−1

)ε−1

+ rc

if the integers n1, n2, n3 and C0 satisfy the compatibility condition:

α− C0 +
(tΓ)(M +

1

4
MΩ−1M

)
Γ + Ā2 −

(
(1− κ) Ā+ κΓ3

)2
= − (2n1 + 1)

√
ς2$2 + (r̂ + rc)

2 − 2n2 + 1

λ
− (2n3 + 1)

∣∣δ − Γ3εK̄
ε−1
∣∣

A minimum for the action may thus exist for

C0 > α+Minη

((tΓ)(M +
1

4
MΩ−1M

)
Γ

)
+

√
ς2$2 + (r̂ + rc)

2 +
1

λ
+
∣∣δ − Γ3εK̄

ε−1
∣∣+(Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
Since the minimum for

((
tΓ
)(
M + 1

4
MΩ−1M

)
Γ
)

is 0 for γη = 0, and since for γη = 0, Γ3 = A0
(1−κ)

, Ā = A0
(1−κ)

, so
that:

Ā2 −
(
(1− κ) Ā+ κΓ3

)2
= 0

and the condition reduces to:

C0 > α+

√
ς2$2 + (r̂ (0) + rc)

2 +
1

λ
+
∣∣δ − Γ3εK̄

ε−1
∣∣ (111)

In that case, the compatibility fixes the value for γη. For n1 = n2 = n3 = 0 it is:

0 = α− C0 −
4γη

(
δ − Γ3εK̄

ε−1
)(

2
(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)
ĀC̄ +

(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 3

)
C̄2 −

(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)
Ā2
)

4
(
γηK̄ε (1− ε) + 2

(
δ − Γ3εK̄ε−1

))2 (112)

+

√
ς2$2 + (r̂ + rc)

2 +
1

λ
+
∣∣δ − Γ3εK̄

ε−1
∣∣+
(
Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
≡ g (η)

for (a+ b) � 1. If we find a solution to (112) with η 6= 0, then (??) will have a solution with γη 6= 0. To inspect

(112), we compare the case γη = 0 and the case γη → δ(2−κ)κ
a+b

. For γη = 0:

g (0) = α− C0 +

√√√√ς2$2 +

(
ε

(
A0

(1− κ)

)ε(
K̄ε (1− ε)− C̄
δ − A0

(1−κ)
εK̄ε−1

)ε−1

+ rc

)2

$2 +
1

λ
+

∣∣∣∣δ − A0εK̄
ε−1

(1− κ)

∣∣∣∣
If one has: ∣∣∣∣δ − A0εK̄

ε−1

(1− κ)

∣∣∣∣� 1

then:
K̄ε (1− ε)− C̄
δ − A0

(1−κ)
εK̄ε−1

� 1

which implies:

ε

(
A0

(1− κ)

)ε(
K̄ε (1− ε)− C̄
δ − A0

(1−κ)
εK̄ε−1

)ε−1

� 1

so that:

g (0) = α− C0 +

√
ς2$2 + (rc)

2 $2 +
1

λ

Now consider γη → δ(2−κ)κ
a+b

. In that case:

Ā2 −
(
(1− κ) Ā+ κΓ3

)2
= (A0 + κΓ3)2 − ((1− κ)A0 + (2− κ)κΓ3)2

=

(
A0 + κ δ

εK̄ε−1

)2

−
(

(1− κ)A0 + (2− κ)κ δ

εK̄ε−1

)2

= − (1− κ)K
κ
(
δ −Kε−1ε A0

(1−κ)

)(
(2− κ)A0 + (3− κ)κ δ

εK̄ε−1

)
εKε
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and this is positive given our assumptions. Moreover, given the same assumptions:((
(1− κ) Ā+ κΓ3

)2 − 2C̄
(
(1− κ) Ā+ κΓ3

)
− C̄2

)
(1− ε)Kε

=

((
(1− κ)

(
A0 + κ δK̄1−ε

ε

)
+ κ δK̄1−ε

ε

)2

− 2C̄
(

(1− κ)
(
A0 + κ δK̄1−ε

ε

)
+ κ δK̄1−ε

ε

)
− C̄2

)
(1− ε)Kε

> 0

and as a consequence:

U = Ā2 −
(
(1− κ) Ā+ κΓ3

)2
+

((
(1− κ) Ā+ κΓ3

)2 − 2C̄
(
(1− κ) Ā+ κΓ3

)
− C̄2

)
(1− ε)Kε

> 0

r̂ + rc '

〈
εA

(
(K′ − C) +AK̄ε (1− ε)

δ −AεK̄ε−1

)ε−1
〉

+ rc

' εΓ3

(
(Γ2 − Γ1) + K̄ε (1− ε) Γ3

δ − Γ3εK̄ε−1

)ε−1

+ rc → rc

since δ − Γ3εK̄
ε−1 → 0 and ε− 1 < 0. Then:

g

(
δ (2− κ)κ
a+ b

)
= α− C0 +

√
ς2$2 + (rc)

2 $2 +
1

λ
+ U

with U > 0. As a consequence, g (0) < g
(
δ(2−κ)κ
a+b

)
, and for all the parameters satisfying our assumptions:

A0 >

(
1 +
√

2
)
C̄ − (2−κ)κδ

ε
K̄1−ε

1− κ∣∣∣∣δ − A0εK̄
ε−1

(1− κ)

∣∣∣∣ < < 1

and all C0 such that g
(
δ(2−κ)κ
a+b

)
> 0 > g (0), that is:

C0 ∈
]
α+

√
ς2$2 + (rc)

2 $2 +
1

λ
, α+

√
ς2$2 + (rc)

2 $2 +
1

λ
+ U

[
there is (γη)0 such that the equation g

(
(γη)0

)
= 0. An estimation for γη can be obtained by rewriting the compati-

bility condition (112):

0 = α− C0 −
4γη

(
2
(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)
ĀC̄ +

(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 3

)
C̄2 −

(
γηK̄ε(1−ε)
δ−Γ3εK̄ε−1 + 4

)
Ā2
)

4
(
δ − Γ3εK̄ε−1

)( γηK̄ε(1−ε)
(δ−Γ3εK̄ε−1)

+ 2

)2

+

√
ς2$2 + (r̂ + rc)

2 +
1

λ
+
∣∣δ − Γ3εK̄

ε−1
∣∣+ Ā2 −

(
(1− κ) Ā+ κΓ3

)2
as:

x
(
2 (x+ 4) ĀC̄ + (x+ 3) C̄2 − (x+ 4) Ā2

)
(x+ 2)2 = D

with:

x =
γηK̄ε (1− ε)(
δ − Γ3εK̄ε−1

)
D = K̄ε (1− ε)

(
α− C0 +

√
ς2$2 + (r̂ + rc)

2 +
1

λ
+
∣∣δ − Γ3εK̄

ε−1
∣∣+ Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
for κ � 1, we can approximate

(
Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
by its value for γη = 0:

Ā2 −
(
(1− κ) Ā+ κΓ3

)2
= 0
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as well as r̂ by 0. Note that D > 0, due to (111). The compatibility equation can be be expanded as:

x
(
2 (x+ 4) ĀC̄ + (x+ 3) C̄2 − (x+ 4) Ā2)− (x+ 2)2 D

=
(
C2 + 2CĀ− Ā2 −D

)
x2 +

(
3C2 + 8CĀ− 4Ā2 − 4D

)
x− 4D

Given our assumptions C2 + 2CĀ− Ā2 < 0 and 3C2 + 8CĀ− 4Ā2 < 4
(
C2 + 2CĀ− Ā2

)
< 0, so that:

x =
−
(
3C2 + 8CĀ− 4Ā2 − 4D

)
−
√(

3C2 + 8CĀ− 4Ā2 − 4D
)2

+ 16D
(
C2 + 2CĀ− Ā2 −D

)
2
(
C2 + 2CĀ− Ā2 −D

)
For A0 � 1 and D < A0 and thus:

|x| ' 4D∣∣3C2 + 8CĀ− 4Ā2 − 4D
∣∣ � 1

γη <

∣∣∣δ − A0
1−χεK̄

ε−1
∣∣∣

K̄ε (1− ε)
4D∣∣3C2 + 8CĀ− 4Ā2 − 4D

∣∣ � 1

Since:

C0 ∈
]
α+

√
ς2$2 + (rc)

2 $2 +
1

λ
, α+

√
ς2$2 + (rc)

2 $2 +
1

λ
+ U

[
with U defined by:

U = − (1− κ)K
κ
(
δ −Kε−1ε A0

(1−κ)

)(
(2− κ)A0 + (3− κ)κ δ

εK̄ε−1

)
εKε

(113)

+

((
(1− κ)

(
A0 + κ δK̄1−ε

ε

)
+ κ δK̄1−ε

ε

)2

− 2C̄
(

(1− κ)
(
A0 + κ δK̄1−ε

ε

)
+ κ δK̄1−ε

ε

)
− C̄2

)
(1− ε)Kε

then

α− C0 +

√
ς2$2 + (rc)

2 +
1

λ
∈ ]0, U [

and:

γη ∈

0, 8

∣∣∣δ − A0
1−χεK̄

ε−1
∣∣∣

K̄ε (1− ε)
U

 (114)

Saddle point stability

The solution of (??) may thus present a non trivial minimum, as asserted before. To prove this point, we have
to show that among the set of possible solutions of (??), the action S (Ψ) is bounded from below. Moreover, the
second order variation of S (Ψ) around the solution with the lowest value of S (Ψ) has to be positive. We write this
second order variation δ2S (Ψ). We decompose the variation ϕ (K,C,A) in three parts. The first part, ϕ (K,C,A)
is orthogonal to the fundamental Ψ1 (K,C,A). We compute below its contribution to δ2S (Ψ). The second part
is proportional to Ψ1 (K,C,A) and corresponds to a variation of the norm η of

√
ηΨ1 (K,C,A), and we write this

variation δ
√
ηΨ1 (K,C,A). The variation of the action with respect to η is thus:

1

2
δ√ηS (Ψ) = (δ

√
η)2

∫
Ψ†1 (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2

+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ1 (K,C,A)

+3γ (δ
√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A)

Given the saddle point equation (102), it reduces to:

1

2
δ√ηS (Ψ) = 2γ (δ

√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A) > 0 (115)
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Since this the average value of A multiplied by the average value of K in the state Ψ1 (K,C,A). The third part
is a combination of the variation in the direction of Ψ1 (K,C,A) and of the ϕ (K,C,A) variation orthogonal to
Ψ1 (K,C,A). The corresponding second order variation is:

1

2
δ√η,ϕS (Ψ) = δ

√
η

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
× (116){

−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ1 (K,C,A)

+2γ (δ
√
η)2 η

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A)

+2γ (δ
√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
AΨ1 (K,C,A)

= γ (δ
√
η)2 η

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A)

+γ (δ
√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
AΨ1 (K,C,A)

where the saddle point equation (102) has been used in the last equation.We will show below that such a contibution
is neglible with respect to (115) or with respect variations involving ϕ (K,C,A) only. As a consequence, the second
order variation involving a variation in the direction of Ψ1 (K,C,A) is positive. We can now turn to the part involving
only variations ϕ (K,C,A) orthogonal to Ψ1 (K,C,A).

1

2
δ2S (Ψ) =

∫
ϕ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+ (A− Γ3)2 (117)

+

(
ς2 +

(r̂ + rc)
2

$2

)
(C − Γ1)2 +

(K′ − Γ2)
2

ν2

+α+
(tΓ)(M +

1

4
MΩ−1M

)
Γ− C0 + κ ((2− κ)A0 + κ (3− κ) Γ3)(A0 − Γ3 (1− κ))

}
ϕ (K,C,A)

−2 (1− κ)κ
(∫ (

ϕ (K,C,A) + ϕ† (K,C,A)
)
AΨ1 (K,C,A)

)2

+γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)

Where
√
ηΨ1 (K,C,A) is the fundamental previously computed for n1 = n2 = n3 = 0,

(
tΓ
)
, and

(
tΓ
)(
M + 1

4
MΩ−1M

)
Γ

is evaluated for this state. The perturbation ϕ (K,C,A) orthogonal to this fundamental state n1 = n2 = n3 = 0, and
normalized to 1.

Given the compatibility condition,

0 = α− C0 +
(tΓ)(M +

1

4
MΩ−1M

)
Γ +

√
ς2$2 + (r̂ + rc)

2 +
1√
λ

+
∣∣δ −AεK̄ε−1

∣∣+
(
Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
and the variation becomes:

1

2
δ2S (Ψ) >

∫
ϕ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+ (A− Γ3)2

+

(
ς2 +

(r̂ + rc)
2

$2

)
(C − Γ1)2 +

(K′ − Γ2)
2

ν2
−
(√

ς2$2 + (r̂ + rc)
2 +

1√
λ

+
∣∣δ −AεK̄ε−1

∣∣)}ϕ (K,C,A)

+γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)

The first part of 1
2
δ2S (Ψ) is positive given the definition of the operator, only the last part can be negative. Given

that:

γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)

' γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

) (K′ − C) +AK̄ε (1− ε)
δ − Γ3εK̄ε−1

Ψ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)
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in first order approximation in Γ3εK̄
ε−1. This expression is non null for the components (n1, n2, n3) = (1, 0, 0),

(0, 1, 0) or (0, 0, 1) of ϕ (K,C,A), to inspect the sign of 1
2
δ2S (Ψ), we can restrict to:

ϕ = a1Ψ(1,0,0) + a2Ψ(0,1,0) + a3Ψ(0,0,1) ≡
3∑
i=1

aiΨi

with
|a1|2 + |a2|2 + |a3|2 = 1

For each variable Xi,∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
XiΨ1 (K,C,A)

=

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
(Xi − Γi) Ψ1 (K,C,A) + Γi

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
Ψ1 (K,C,A)

= (ai + a∗i )

∫
Ψi (K,C,A) (Xi − Γi) Ψ1 (K,C,A)

Now,

(Xi − Γi) =
A†i +Ai√

2ωi

where are the annihilation/creation operators, and with:

ω1 =

√
ς2

$2
+

(r̂ + rc)
2

$4

ω2 =
1

|δ −AF ′ (K)| ν
ω3 = λ

As a consequence: ∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
XiΨ1 (K,C,A) =

(ai + a∗i )√
2ωi

(118)

and this allows to estimate the various contributions in (117). The term proportional to κ can be computed as:

−2 (1− κ)κ
(∫ (

ϕ (K,C,A) + ϕ† (K,C,A)
)
AΨ1 (K,C,A)

)2

= −2 (1− κ)κ
(
a3 + a∗3√

2λ

)2

and

8

∣∣∣δ − A0
1−χεK̄

ε−1
∣∣∣

K̄ε (1− ε)

∣∣∣∣α− C0 +

√
ς2$2 + (rc)

2 +
1

λ

∣∣∣∣
− 4 (KεA0 (1− ε)− CY (1− κ))

(1− κ)
∣∣∣δ − A0

1−χεK̄
ε−1

∣∣∣ K̄ε (1− ε)

∣∣∣∣α− C0 +

√
ς2$2 + (rc)

2 +
1√
λ

∣∣∣∣
Other terms can be estimated in the same way:

γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)

= γη

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

) (K′ − C) +AK̄ε (1− ε)
δ − Γ3εK̄ε−1

Ψ1 (K,C,A)

∫ (
ϕ (K,C,A) + ϕ† (K,C,A)

)
AΨ1 (K,C,A)

= γη

(
(a2+a∗2)√

2ω2
− (a1+a∗1)√

2ω1

)
+

(a3+a∗3)√
2ω3

K̄ε (1− ε)

δ − Γ3εK̄ε−1

(a3 + a∗3)√
2ω3

= γη

(
(a2+a∗2)

√
|δ−AF ′(K)|ν

2
√
λ

− (a1+a∗1)$

2

√
λ
√
ς2$2+(r̂+rc)

2

)
(a3 + a∗3) +

(a3+a∗3)2

2λ
K̄ε (1− ε)

δ − Γ3εK̄ε−1

Moreover, for:

ϕ = a1Ψ(1,0,0) + a2Ψ(0,1,0) + a3Ψ(0,0,1) ≡
3∑
i=1

aiΨi
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the first part of 1
2
δ2S (Ψ) is equal to:∫

ϕ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+ (A− Γ3)2

+

(
ς2 +

(r̂ + rc)
2

$2

)
(C − Γ1)2 +

(K′ − Γ2)
2

ν2
−
(√

ς2$2 + (r̂ + rc)
2 +

1

λ
+
∣∣δ −AεK̄ε−1

∣∣)}ϕ (K,C,A)

= 2 |a1|2
√
ς2$2 + (r̂ + rc)

2 $2 +
2 |a3|2

λ
+ 2

∣∣δ −AεK̄ε−1
∣∣ |a2|2

and then:

1

2
δ2S (Ψ) > 2 |a1|2

√
ς2$2 + (r̂ + rc)

2 +
2 |a3|2

λ
+ 2

∣∣δ −AεK̄ε−1
∣∣ |a2|2 + γη

(a3+a∗3)2

2λ
K̄ε (1− ε)

δ − Γ3εK̄ε−1

+γη

(
(a2+a∗2)

√
|δ−Γ3εK̄ε−1|ν
2
√
λ

− (a1+a∗1)$

2

√
λ
√
ς2$2+(r̂+rc)

2

)
(a3 + a∗3)

δ − Γ3εK̄ε−1
− (1− κ)κ (a3 + a∗3)2

λ

Given that:

|(a2 + a∗2)(a3 + a∗3)| < 4 |a2| |a3| < 2
(
|a3|2 + |a2|2

)
|(a1 + a∗1)(a3 + a∗3)| < 2

(
|a3|2 + |a1|2

)
|(a2 + a∗2)(a3 + a∗3)| < 4 |a2| |a3| < 2

(
|a3|2 + |a2|2

)
|(a1 + a∗1)(a3 + a∗3)| < 2

(
|a3|2 + |a1|2

)
one has:

γη

∣∣∣∣∣∣∣∣
 (a2 + a∗2)

√∣∣δ − Γ3εK̄ε−1
∣∣ν

2
√
λ

− (a1 + a∗1)$

2

√
λ
√
ς2$2 + (r̂ + rc)

2

(a3 + a∗3)

+γη

(a3+a∗3)2

2λ
K̄ε (1− ε)

δ − Γ3εK̄ε−1
− (1− κ)κ (a3 + a∗3)2

λ

∣∣∣∣∣∣
<

$

(
γη
(
|a3|2 + |a2|2

) √|δ−Γ3εK̄ε−1|ν
√
λ

+ γη
(
|a3|2 + |a1|2

))
√
λ
√
ς2$2 + (r̂ + rc)

2

+ γη
2 |a3|2 K̄ε (1− ε)
λ
∣∣δ − Γ3εK̄ε−1

∣∣ + 4 (1− κ)κ |a3|2

λ

< γη |a1|2
$√

λ
√
ς2$2 + (r̂ + rc)

2

+ γη |a2|2
√∣∣δ − Γ3εK̄ε−1

∣∣ν
√
λ

+

γη

√∣∣δ − Γ3εK̄ε−1

∣∣ν
2
√
λ

+
$

2

√
λ
√
ς2$2 + (r̂ + rc)

2

+
2K̄ε (1− ε)

λ
∣∣δ − Γ3εK̄ε−1

∣∣
+

1

λ

 |a3|2
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As a consequence:

1

2
δ2S (Ψ) >

2

√
ς2$2 + (r̂ + rc)

2 − γη $√
λ
√
ς2$2 + (r̂ + rc)

2

 |a1|2

+

2
∣∣δ −AεK̄ε−1

∣∣− γη |a2|2
√∣∣δ − Γ3εK̄ε−1

∣∣ν
√
λ

 |a2|2

+

 1

λ
− γη


√∣∣δ − Γ3εK̄ε−1

∣∣ν
2
√
λ

+
$

2

√
λ
√
ς2$2 + (r̂ + rc)

2

+
2K̄ε (1− ε)

λ
∣∣δ − Γ3εK̄ε−1

∣∣

 |a3|2

Since we found that:

γη <

∣∣∣δ − A0
1−χεK̄

ε−1
∣∣∣

K̄ε (1− ε)
4D∣∣3C2 + 8CĀ− 4Ā2 − 4D

∣∣
For A0 � 1, and for C0 such that D < A0, there is a large range of parameters such that the contributions proportional
to |ai|2, i = 1, 2, 3 are positive, and thus 1

2
δ2S (Ψ) > 0.

We conclude by noting that for similar arguments, the sum of (116) and (115) is positive. Actually (116) has the
same form as (118) and is equal to:

2γ (δ
√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A)

+γ (δ
√
η)2 η

∫
Ψ†1 (K,C,A)KΨ1 (K,C,A)

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
AΨ1 (K,C,A)

+γ (δ
√
η)2 η

∫ (
ϕ† (K,C,A) + ϕ (K,C,A)

)
KΨ1 (K,C,A)

∫
Ψ†1 (K,C,A)AΨ1 (K,C,A)

= 2γ (δ
√
η)2 η 〈K〉 〈A〉

+γ (δ
√
η)2 η

〈K〉 (a3 + a∗3)√
λ

+

(
(a2+a∗2)

√
|δ−Γ3εK̄ε−1|ν

2
− (a1+a∗1)$

2

√√
ς2$2+(r̂+rc)

2

)
(a3 + a∗3)

δ − Γ3εK̄ε−1
〈A〉


and ∣∣∣∣∣∣∣∣∣〈K〉

(a3 + a∗3)√
λ

+

(
(a2+a∗2)

√
|δ−Γ3εK̄ε−1|ν

2
− (a1+a∗1)$

2

√√
ς2$2+(r̂+rc)

2

)
(a3 + a∗3)

δ − Γ3εK̄ε−1
〈A〉

∣∣∣∣∣∣∣∣∣
< 2

 〈K〉√λ +

(√∣∣δ − Γ3εK̄ε−1
∣∣ν + $√√

ς2$2+(r̂+rc)
2

)
∣∣δ − Γ3εK̄ε−1

∣∣ 〈A〉


< 2γ (δ

√
η)2 η 〈K〉 〈A〉

For values of A0 and K̄ that are large enough.

Computation of the Green functions in both Phases

As explained in the text, to inspect the transition functions in the various phases of the system, one has to come
back to the initial set of variables (K,C,A). We consider each phase separately.
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In the phase Ψ1 (K,C,A) = 0, one can directly come back to the initial action for Ψ (K,C,A), and write:∫
Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2
∂

∂K
(C −AF (K) + δK) (119)

−2
∂

∂C

(
AF ′ (K) + rc

)(
C − C̄

)
+ (α− C0)

}
Ψ (K,C,A)

+
γ

2

∫ (
Ψ† (K1, C1, A1)A1Ψ† (K1, C1, A1)

)(
Ψ† (K2, C2, A2)K2Ψ† (K2, C2, A2)

)
We have set ς = 0, since we assumed ς � 1. We first neglect the interaction term and compute the transition function

associated to: ∫
Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2
∂

∂K
(C −AF (K) + δK) (120)

+2
∂

∂C

(
AF ′ (K) + rc

)(
C − C̄

)
+ (α− C0)

}
Ψ (K,C,A)

with Ā = A0
1−χ as computed in the previous sections. The corrections due to the interactions will be inspected in the

next section. The transition function is equal to the Green function for the operator:

L = −$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā

)2 − 2 (C −AF (K) + δK)
∂

∂K
− 2

(
AF ′ (K) + rc

)(
C − C̄

) ∂

∂C
+α− C0

In the phase where Ψ1 (K,C,A) 6= 0, one has to proceed indirectly. Starting with action (100) (with H (K1,K2) = 1)
whose saddle point equation is (108):

S
(
Ψ̄
)

=

∫
Ψ̄†
(
K′, C,A

){
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
(121)

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ̄
(
K′, C,A

)
+γ

1

2

∫
Ψ̄†
(
K′1, C1, A1

)
Ψ̄†
(
K′2, C2, A2

)
{A2K1 +A1K2} Ψ̄

(
K′1, C1, A1

)
Ψ̄
(
K′2, C2, A2

)
One has to shift the field by letting: Ψ̄ (K,C,A) = Ψ (K′, C,A) + Ψ1 (K′, C,A). Using that Ψ1 (K,C,A) is a saddle
point, it yields the following expansion in the shifted field Ψ (K′, C,A):

Ŝ (Ψ) = Ψ (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
(122)

+2
(
Ā− Γ3

)
κA+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0

}
Ψ (K,C,A)

+γη

∫ (
Ψ (K,C,A) + Ψ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
Ψ (K,C,A) + Ψ† (K,C,A)

)
AΨ1 (K,C,A)

+
γ

2

∫ (
Ψ†1 (K,C,A)AΨ†1 (K,C,A)

)∫ (
Ψ† (K,C,A)KΨ† (K,C,A)

)
+
γ

2

∫ (
Ψ† (K,C,A)AΨ† (K,C,A)

)∫ (
Ψ†1 (K,C,A)KΨ†1 (K,C,A)

)
+
γ

2

∫ (
Ψ† (K,C,A)AΨ (K,C,A)

)∫ (
Ψ† (K,C,A)KΨ (K,C,A)

)
The term 2

(
Ā− Γ3

)
κA comes from the second order expansion of Ā =

∫
Ψ̄† (K′, C,A)AΨ̄ (K′, C,A), using that, as

shown in the previous section (stability analysis), the product of the projections of
(
Ψ (K,C,A) + Ψ† (K,C,A)

)
K

and
(
Ψ (K,C,A) + Ψ† (K,C,A)

)
A on Ψ1 can be neglected. For the same reasons, the term:

γη

∫ (
Ψ (K,C,A) + Ψ† (K,C,A)

)
KΨ1 (K,C,A)

∫ (
Ψ (K,C,A) + Ψ† (K,C,A)

)
AΨ1 (K,C,A)
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can also be neglected. The last term:

γ

2

∫ (
Ψ† (K,C,A)AΨ (K,C,A)

)∫ (
Ψ† (K,C,A)KΨ (K,C,A)

)
is a quartic interaction term in Ψ (K,C,A). As for the other phase, we discard this term that will be considered
perturbatively. Let:

Γ3 =

∫
Ψ†1
(
K′, C,A

)
AΨ1

(
K′, C,A

)
Γ1 =

∫
Ψ†1
(
K′, C,A

)
CΨ1 (K,C,A)

Γ2 =

∫
Ψ†1
(
K′, C,A

)
K′Ψ1 (K,C,A)

Moreover: ∫
Ψ†1 (K,C,A)KΨ1 (K,C,A) =

(Γ2 − Γ1) + Γ3K̄
ε (1− ε)

δ − Γ3εK̄ε−1

We are thus left with the following quadratic action:

Ŝ (Ψ) = Ψ (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā

)2
+ 2

(
Ā− Γ3

)
κA

+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄

)2
+

(K′)
2

ν2
+ α− C0 + γηΓ3K + γηA

(Γ2 − Γ1) + Γ3K̄
ε (1− ε)

δ − Γ3εK̄ε−1

}
Ψ (K,C,A)

It is shown in the previous sections that under our assumptions Γ2 = 0, and that Γ1 and Γ3 are defined such that
the previous action rewrites:

Ŝ (Ψ) = Ψ (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 (δ −AF ′ (K)

)2 ∂2

∂K′2
+
(
A− Ā1

)2
+

(
ς2 +

(AF ′ (K) + rc)
2

$2

)(
C − C̄1

)2
+

(K′)
2

ν2
+
(tΓ)(M +

1

4
MΩ−1M

)
Γ +m1 + α− C0

}
Ψ (K,C,A)

where:

Ā1 = A0 + χΓ3

C̄1 = Γ1

have been computed previously, and:

m1 =
(tΓ)(M +

1

4
MΩ−1M

)
Γ +

(
Ā2 −

(
(1− κ) Ā+ κΓ3

)2)
+ α− C0

Γ =

 Γ1

Γ2

Γ3

 ,Ω =


(
ς2 +

(Γ3F
′(K)+rc)

2

$2

)
0 0

0 1
ν2 0

0 0 1


M =

γη

δ − Γ3εK̄ε−1

 0 0 −1
0 0 1
−1 1 K̄ε (1− ε)


Remark that m1 has been computed in the previous section, and m1 > 0. More precisely:

m1 = Ā2
1 −

(
(1− κ) Ā1 + κΓ3

)2
+

((
(1− κ) Ā1 + κΓ3

)2 − 2C̄
(
(1− κ) Ā1 + κĀ1

)
− C̄2

1

)
(1− ε) K̄ε

Now, it is possible to come back to the initial variables, through a transformation similar to the one performed
in the dirst section of this Appendix (and in the reverse direction):

Ψn (K,C,A) = exp

(
1

2$2

((
AF ′ (K) + rc

)(
C − C̄1

)2)− (K′)
2

2ν2 (δ −AF ′ (K))

)
Ψ̄n

(
K′, C,A

)
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Ψ†n (K,C,A) = exp

(
− 1

2$2

((
AF ′ (K) + rc

)(
C − C̄1

)2)
+

(K′)
2

2ν2 (δ −AF ′ (K))

)
Ψ̄n

(
K′, C,A

)
This leads to the following action:∫

Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Ā1

)2 − 2
∂

∂K
(C −AF (K) + δK) (123)

+2
∂

∂C

(
AF ′ (K) + rc

)(
C − C̄1

)
+m1 + (α− C0)

}
Ψ (K,C,A)

Then, the two phases (120) and (123) can be put on the same footing. Both actions have the form:∫
Ψ† (K,C,A)

{
−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Āi

)2 − 2
∂

∂K
(C −AF (K) + δK) (124)

+2
∂

∂C

((
AF ′ (K) + rc

)(
C − C̄i

))
+mi + (α− C0)

}
Ψ (K,C,A)

for i = 0 (phase with Ψ1 = 0) or i = 0 (phase with Ψ1 6= 0). We have defined:

Ā0 =
A0

1− χ
C̄0 = C̄

m0 = 0

The difference between manifests thus both through the different values of Ā and Ā1 and by the ”mass terms” mi

In the phase (123), characterized by a non zero fundamental Ψ1, the mass term m1 is greater than 0, which implies
reduced transitions probabilities compared to the other phases. The duration of interaction is lower than phase ”0”,
which means a more static system. To solve explicitly for the transition function in both phases, one can use, as
before, the expansion above a minimal level of capital to express the production function:

AF (K) = Kε ' AK̄ε + εĀi
K − K̄
K̄1−ε

with:

Ā0 = Ā =
A0

1− χ, Ā1 = A0 + χΓ3

However, we will see below how to avoid this approximations. Neglecting the interaction term, and rescaling:

G
(
K,C,A,K′, C′, A′

)
→ exp (−mis)G

(
K,C,A,K′, C′, A′

)
the Green functions for phase i = 0, 1 satisfy a similar equation:{

−$2 ∂2

∂C2
− 1

λ2

∂2

∂A2
− ν2 ∂2

∂K2
+
(
A− Āi

)2 − 2
∂

∂K

(
C − C̄ −

(
AK̄ε + εĀi

K − K̄
K̄1−ε

)
+ δ

(
K − K̄

)
+
(
δK̄ + C̄

))
(125)

+2
∂

∂C

(
ĀiεK̄

ε−1 + rc
)(
C − C̄

)
+mi

}
G
(
K,C,A,K′, C′, A′

)
= δ

(
(K,C,A)−

(
K′, C′, A′

))
Since λ2 � 1, we first neglect the term

(
A− Āi

)2
, to reintroduce it later.

in Fourier components:

Ĝ =

∫
exp

(
ilC
(
C − C̄

)
+ ilK

(
K − K̄

)
+ ilAA

)
G

and (125) becomes:{
$2l2C +

1

λ2
l2A + ν2l2K − 2ilK

(
δK̄ + C̄

)
− 2lK

(
∂

∂lC
− K̄ε ∂

∂lA
+

(
δ − εĀi

K̄1−ε

)
∂

∂lK

)
+2lC

(
ĀiεK̄

ε−1 + rc
) ∂

∂lC
+mi

}
Ĝ
(
K,C,A,K′, C′, A′

)
= exp

(
−i
∑
i

li.xi

)

We also define Ḡ as:

Ĝ = exp

(
−i δK̄ + C̄

δ − εĀi
K̄1−ε

lK

)
Ḡ
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and this function satisfies the equation:{
$2l2C +

1

λ2
l2A + ν2l2K − 2lK

(
∂

∂lC
− K̄ε ∂

∂lA
+

(
δ − εĀi

K̄1−ε

)
∂

∂lK

)
(126)

+2lC
(
ĀiεK̄

ε−1 + rc
) ∂

∂lC
+mi

}
Ḡ
(
K,C,A,K′, C′, A′

)
= exp

(
−i
∑
i

li.xi

)

whose solution is:

Ḡ =

∫
exp (−mis) exp

(
−1

2

∑
i,j

liHi,j lj − i
∑
i

Jili

)
ds

with H and J satisfying the equations:

2Ω̂−NH −H
(tN) = 2

∂

∂s
H (127)

∂

∂s
J = −1

2
NJ

and where:

Ω̂ =

 $2 0 0
0 ν2 0
0 0 1

λ2

 , N =

 −2
(
ĀiεK̄

ε−1 + rc
)

0 0

−2 −2
(
δ − εĀi

K̄1−ε

)
2K̄ε

0 0 0


H =

 a b c
b d e
c e f


The initial initial conditions to solve (126):

H (0) = 0 (128)

J (0) =

 C′ − C̄
K′ − K̄
A′



J1 =
(
C′ − C̄

)
exp

((
ĀiεK̄

ε−1 + rc
)
s
)

J2 =

(
K′ − K̄ −

[ (
C′ − C̄

)
2ĀiεK̄ε−1 + rc − δ

+
K̄εA′

δ − εĀi
K̄1−ε

])
exp

(
−
(
δ − εĀi

K̄1−ε

)
s

)

+

(
C′ − C̄

)
exp

((
ĀiεK̄

ε−1 + rc
)
s
)

2ĀiεK̄ε−1 + rc − δ
+

K̄εA′

δ − εĀi
K̄1−ε

J3 = J̄3 = A′

To find H, we first compute NH +H
(
tN
)
:

NH +H
(tN)

=

 −2
(
ĀiεK̄

ε−1 + rc
)

0 0

−2 −2
(
δ − εĀi

K̄1−ε

)
2K̄ε

0 0 0


 a b c

b d e
c e f



+

 a b c
b d e
c e f


 −2

(
ĀiεK̄

ε−1 + rc
)

−2 0

0 −2
(
δ − εĀi

K̄1−ε

)
0

0 2K̄ε 0



=


−2a

(
2rc + 2Kε−1Āiε

) (
2K̄εc− b

(
2rc + 2K̄ε−1Āiε

)
−2a− b

(
2δ − 2K̄ε−1Āiε

) )
−c
(
2rc + 2K̄ε−1Āiε

)(
2K̄εc− b

(
2rc + 2K̄ε−1Āiε

)
−2a− b

(
2δ − 2K̄ε−1Āiε

) )
4K̄εe− 4b− 4d

(
δ − K̄ε−1Āiε

)
2K̄εf − 2c− e

(
2δ − 2K̄ε−1Āiε

)
−c
(
2rc + 2K̄ε−1Āiε

)
2K̄εf − 2c− e

(
2δ − 2K̄ε−1Āiε

)
0


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and (127) leads to the set of differential equations:

ȧ = 2a
(
2rc + 2K̄ε−1Āiε

)
+ 2$2

ḃ = −2K̄εc+ b
(
2rc + 2K̄ε−1Āiε

)
+ 2a+ b

(
2δ − 2K̄ε−1Āiε

)
ċ = 2c

(
rc + K̄ε−1Āiε

)
ḋ = −

(
4K̄εe− 4b− 4d

(
δ − K̄ε−1Āiε

))
+ 2ν2

ė = −2K̄εf + 2c+ 2e
(
δ − K̄ε−1Āiε

)
ḟ =

2

λ2

whose solution involves 6 constants of integration, and given the initial conditions, it yields

a = − $2

2
(
rc + K̄ε−1Āiε

) + a1 exp
(
4
(
rc + K̄ε−1Āiε

)
s
)

(129)

=
$2
(
exp

(
4
(
rc + K̄ε−1Āiε

)
s
)
− 1
)

2
(
rc + K̄ε−1Āiε

)
f =

2

λ2
s

c = a3 exp
(
2
(
rc + K̄ε−1Āiε

)
s
)

= 0

b = a2 exp (2 (δ + rc) s) +
$2 exp

(
4
(
rc + K̄ε−1Āiε

)
s
)

2
(
rc + K̄ε−1Āiε

)(
rc − δ + 2K̄ε−1Āiε

) +
$2

2 (δ + rc)
(
rc +Kε−1Āiε

)
= − $2 exp (2 (δ + rc) s)(

rc − δ + 2K̄ε−1Āiε
)

(δ + rc)
+

$2 exp
(
4
(
rc + K̄ε−1Āiε

)
s
)

2
(
rc + K̄ε−1Āiε

)(
rc − δ + 2K̄ε−1Āiε

)
+

$2

2 (δ + rc)
(
rc + K̄ε−1Āiε

)
e = a5 exp

(
2
(
δ − K̄ε−1Āiε

)
s
)

+
2K̄ε

λ2
(
δ − K̄ε−1Āiε

)s+
K̄ε

λ2
(
δ − K̄ε−1Āiε

)2
= −

Kε
(
exp

(
2
(
δ − K̄ε−1Āiε

)
s
)
− 1
)

λ2
(
δ − K̄ε−1Āiε

)2 +
2K̄ε

λ2
(
δ − K̄ε−1Āiε

)s
d = − ν2

2
(
δ − K̄ε−1Āiε

) + a4 exp
(
4
(
δ − K̄ε−1Āiε

)
s
)

−
2K̄2ε

(
exp

(
2
(
δ − K̄ε−1Āiε

)
s
))

λ2
(
δ − K̄ε−1Āiε

)3
+

2K̄2ε

λ2
(
δ − K̄ε−1Āiε

)2 s+
K̄2ε

2λ2
(
δ − K̄ε−1Āiε

)3
− $2

2
(
δ − K̄ε−1Āiε

)
(δ + rc)

(
rc + K̄ε−1Āiε

)
+

$2 exp
(
4
(
rc + K̄ε−1Āiε

)
s
)

2
(
rc + K̄ε−1Āiε

)(
rc − δ + 2K̄ε−1Āiε

)2
− $2 exp (2 (δ + rc) s)

2
(
rc − δ + 2K̄ε−1Āiε

)2
(δ + rc)

which is the result stated in the text. These expressions can be simplified given our assumptions about the parameters
and for mi relatively large, mi > δ, rc, K̄

ε−1Āiε. Equivalently it corresponds to consider s� 1. In this case, this can
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be approximated by:

a = 2$2s

f =
2

λ2
s,

c = 0,

b = 0

e = 0

d = 2ν2s+
4K̄2εs

λ2
(
δ − K̄ε−1Āiε

)2 − 3$2s

(δ + rc)
(
δ − rc − 2K̄ε−1Āiε

)
' 4K̄2εs

λ2
(
δ − K̄ε−1Āiε

)2
so that:

H =

 2$2 0 0

0 2ν2 + 4K̄2ε

λ2(δ−K̄ε−1Āiε)
2 − 3$2

(δ+rc)(δ−rc−2K̄ε−1Āiε)
0

0 0 2
λ2

 s

For J , the formula simplify as:

J1 =
(
C′ − C̄

)(
1 +

(
ĀiεK̄

ε−1 + rc
)
s
)

J2 =

(
K′ − K̄ −

[ (
C′ − C̄

)
2ĀiεK̄ε−1 + rc − δ

+
A′K̄ε

δ − K̄ε−1Āiε

])(
1 +

(
δ − εĀiK̄ε−1) s)

+

(
C′ − C̄

)
2ĀiεK̄ε−1 + rc − δ

(
1 +

(
ĀiεK̄

ε−1 + rc
)
s
)

+
A′K̄ε

δ − K̄ε−1Āiε

=
(
K′ − K̄

)(
1 +

(
δ − εĀiK̄ε−1) s)− (C′ − C̄) s+ 2A′K̄εs

J3 = J̄3 = A′

The Green function is computed through the inverse Fourier transform:

G
(
C,K,A,C′,K′, A′, s

)
=

∫
exp

(
−ilC

(
C − C̄

)
− ilK

(
K − K̄ +

δK̄ + C̄

δ − K̄ε−1Āiε

)
− ilAA

)
exp

(
−1

2

∑
i,j

liHi,j lj − i
∑
i

Jili

)
dlCdlKdlA

=
exp

(
− 1

2

(
tXH−1X

))
√

detH

with:

X =


(
C − C̄

)
+ J1(

K − K̄ + δK̄+C̄
δ−K̄ε−1Āiε

)
+ J2

A+ J3


H =

 $2 0 0

0 ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β
0

0 0 1
λ2


As a consequence, the green function between two points (C′,K′, A′) and (C,K,A) is:

G
(
C,K,A,C′,K′, A′, s

)
=

exp
(
− 1

2

(
tXH−1X

))
√

2π detH
(130)

=

exp

− ((C−C̄i)−(C′−C̄i)(1+(α+β)s))2

2$2s
−

((
K−K̄+

δK̄+C̄i
α

)
−
((

K′−K̄+
δK̄+C̄i
α

)
(1−αs)−(C′−C̄i)s+A′K̄εs

))2

2
(
ν2+ 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

− λ2(A−A′)2

2s


2

√
2π$

2

λ2

(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

65



with:

α = δ − K̄ε−1Āiε

β = 2ĀiεK̄
ε−1 + rc − δ

δ + rc = 2α+ β

ĀiεK̄
ε−1 + rc = α+ β

The contribution due to the potential term
(
A− Ā

)2
can be reintroduced. Since the contribution of A in the

exponential is gaussian, that is,
λ2(A−A′)2

4s
, the quadratic contribution can be introduced by adding a contribution(

A+A′
2
−Āi

)2

2
s. Reintroducing also the factor exp (−mis), yields:

G
(
C,K,A,C′,K′, A′, s

)
=

exp (−mis) exp
(
− 1

2

(
tXH−1X

))
√

2π detH
(131)

=
1

2

√
2π$

2

λ2

(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

× exp

(
−
((
C − C̄i

)
−
(
C′ − C̄i

)
(1 + (α+ β) s)

)2
2$2s

)

×exp

−
((
K − K̄ + δK̄+C̄i

α

)
−
((
K′ − K̄ + δK̄+C̄i

α

)
(1− αs)−

(
C′ − C̄i

)
s+A′K̄εs

))2

2
(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s


×exp

−λ2 (A−A′)2

2s
−

(
A+A′

2
− Āi

)2

2
s−mis


Remark that we could also find an expression for G (C,K,A,C′,K′, A′, s) for all s, using (129) and (130): the
inversion of the matrix H would produce an exponential weight with non quadratic exponents. We will not develop
this point here.

As said before we can also avoid our approximations about the production function. Since we have considered s
relatively small, the expansion of the production function could have been done between the final and initial point,
for any form of production function. It amounts to replace the coefficients in the previous expression by:

α = δ − A+A′

2
F ′
(
K +K′

2

)
(132)

β = 2
A+A′

2
F ′
(
K +K′

2

)
+ rc − δ

δ + rc = 2α+ β

A+A′

2
F ′
(
K +K′

2

)
+ rc = α+ β

Equation (131) represent a stochatic motion around an average path. The equilibrium value can be found by letting:

K = K′ = Ke

C = C′ = Ce

A = A′ = Ae

and by setting the exponent equal to 0. One finds:

Ke =
(1− ε) ĀiK̄ε − C̄i
δ − K̄ε−1Āiε

Ce = C̄i

Ae = Āi

and replacing these values in the exponent, and equating this one with 0, yields directly the relations:(
C − C̄i

)
=

(
C′ − C̄i

)
+
(
C′ − C̄i

)
(α+ β) s

(K −Ke) =
(
K′ −Ke

)
− α

(
K′ −Ke

)
s−

(
C′ − C̄i

)
s

λ2 (A−A′) = −
A+A′

2
− Āi

2
s
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In the limit of small s, and using (132), as well as K+K′

2
→ K leads to a differential equation for the average path:

d

dt

(
C (t)− C̄i

)
=

(
C (t)− C̄i

)(
AF ′ (K (t)) + rc − δ

)
d

dt
(K (t)−Ke) =

(
AF ′ (K (t))− δ

)
(K (t)−Ke)−

(
C (t)− C̄i

)
λ2 d

(
A− Āi

)
dt

= −
(
A− Āi

)
2

This describes a simplified model of capital accumulation: the first equation id the usual Euler equation with interest
rate. The second one is the dynamic for the capital variable. The last equation describes the dynamic for the
technology level. The fixed point Āi depends on the whole system and it’s interaction as seen in (110).

We end up this section by computing the Laplace transform of G (C,K,A,C′,K′, A′, s), that is, the one agent
propagator of the system:

G
(
C,K,A,C′,K′, A′, α

)
(133)

=

∫
exp (− (mi + α− C0) s)× 1

2

√
2π$

2

λ2

(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

× exp

(
−
((
C − C̄

)
−
(
C′ − C̄i

)
(1 + (α+ β) s)

)2
2$2s

)

× exp

−
((
K − K̄ + δK̄+C̄i

α

)
−
((
K′ − K̄ + δK̄+C̄i

α

)
(1− αs)−

(
C′ − C̄i

)
s+A′K̄εs

))2

2
(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s


× exp

−λ2 (A−A′)2

2s
−

(
A+A′

2
− Āi

)2

2
s−mis

 ds

C =
(
C′ − C̄i

)
(1− (α+ β) s)

This can be found explicitly as the Laplace transform of a gaussian expression. Actually:∫
exp (−mis)

exp
(
− 1

2s

(
t (X − sY )H−1 (X − sY )

))
√

2π detHs
ds

=

∫
exp

(
−
(
mi +

1

2

(tY )H−1Y

)
s

)
exp

(
− 1

2s

(
tXH−1X

))
√

2π detHs
ds exp

((tX)H−1 (Y )
)

=
exp

(
−
√

2mi + (tY )H−1Y
√

(tXH−1X) +
(
tX
)
H−1 (Y )

)
√

2mi + (tY )H−1Y

and as a consequence:

G
(
C,K,A,C′,K′, A′,mi

)
=

exp
(
−
√

2mi + (tY )H−1Y
√

(tXH−1X) +
(
tX
)
H−1 (Y )

)
√

2mi + (tY )H−1Y

=

exp

(
−
√

2mi +
(α+β)2(C′−C̄)2

$2 +
((K′−K̄)α+δK̄+C′−A′K̄ε)2(

ν2+ 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

) √
(C−C′)2

4$2 + ((K−K′))2

4
(
ν2+ 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

) + λ2(A−A′)2
4

)
√

2mi +
(α+β)2(C′−C̄)2

$2 +
((K′−K̄)α+(C′−C̄)−A′K̄ε)2(

ν2+ 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)

× exp

 (α+ β)(C − C′)
(
C′ − C̄

)
2$2

+
((K −K′))

((
K′ − K̄

)
α+ δK̄ + C′ −A′K̄ε

)
2
(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)

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Correction to the Green function due to the interaction term

The interaction term

γ

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2) {A2K1 +A1K2}Ψ (K1, C1, A1) Ψ (K2, C2, A2)

modifies the Green functions of individual agents. The correction at first order in γ is obtained by the application
of the Wick theorem to the interaction term. The contractions Ψ† (Ki, Ci, Ai) Ψ† (Kj , Cj , Aj)︸ ︷︷ ︸ being replaced by

propagators G (Ki, Ci, Ai,Kj , Cj , Aj ,mi). It leads to the contribution:

δG
(
C,K,A,C′,K′, A′,mi

)
= γ

∫
G (C,K,A,C1,K1, A1,mi)(A2K1 +A1K2)G (C1,K1, A1, C2,K2, A2,mi)

×G
(
C2,K2, A2, C

′,K′, A′,mi

)
d (C1,K1, A1) d (C2,K2, A2)

which is given by the following contribution.

exp
(
−
√

2mi + (tX1)H−1X1

√
(tXH−1X) +

(
tX
)
H−1 (X1)

)
√

2mi + (tX1)H−1X1

×
(tX1

)
B (X2)

exp
(
−
√

2mi + (tX2)H−1X2

√
(tX1H−1X1) +

(
tX1

)
H−1 (X2)

)
√

2mi + (tX2)H−1X2

×
exp

(
−
√

2mi + (tX ′)H−1X ′
√

(tX2H−1X2) +
(
tX2

)
H−1 (X ′)

)
√

2mi + (tX ′)H−1X ′

However, in this case, it is much more convenient to work with the time representation and to compute rather
δG (C,K,A,C′,K′, A′, s). The correction at first order in γ is:

δG
(
C,K,A,C′,K′, A′, s

)
(134)

= γ

∫
G (C,K,A,C1,K1, A1, s1)(A2K1 +A1K2)G (C1,K1, A1, C2,K2, A2, s2)

G
(
C2,K2, A2, C

′,K′, A′, s− s1 − s2

)
d (C1,K1, A1)(C2,K2, A2) ds1ds2

= γ 〈A2K1 +A1K2〉

with a mean taken for a stochastic process constrained to start at (C′,K′, A′) and to end at (C,K,A). In first
approximation, one can approximate 〈A2K1 +A1K2〉 by its value along the average path. This one is given by the
minimization of: ∫ (

t

(
d

ds
X +MX

)
H−1

(
d

ds
X +MX

))
(135)

for a path starting at (C′,K′, A′, s), and ending at (C,K,A,C′). The matrices M and H are given by the exponential
weight (133):

exp

(
−
(
(C − C′) + 2

(
C′ − C̄

)
(α+ β) s

)2
4$2s

−

(
(K −K′) + 2

((
K′ − K̄ + δK̄+C̄

α

)
α+

(
C′ − C̄

)
−A′K̄ε

)
s
)2

4
(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

− λ2 (A−A′)2

4s


so that:

M =

 (α+ β) 0 0
1 α −K̄ε

0 0 0

 ,tM =

 (α+ β) 1 0
0 α 0
0 −Kε 0


H =

 2$2 0 0

0 2
(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
0

0 0 2
λ2

 =

 a 0 0
0 b 0
0 0 c


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 a 0 0
0 b 0
0 0 c

 (α+ β) 1 0
0 α 0
0 −Kε 0

 a 0 0
0 b 0
0 0 c

−1 (α+ β) 0 0
1 α −K̄ε

0 0 0


The paths that minimize (135) satisfiy:

H−1 d
2

ds2
X +H−1M

d

ds
X −

(t (H−1M
)) d
ds
X −

(tM)H−1MX = 0

or equivalently:
d2

ds2
X +H

(
H−1M −

(t (H−1M
))) d

ds
X −H

(tM)H−1MX = 0 (136)

We will solve (136), by looking first for a solution exp (Ns) at the first order in α and β. A straightforward
computation yields:

N =

 − (α+ β) 0 0
−1 −α Kε

0 0 0

+O
(
α2)

exp (Nu) =

 1− u (β + α) 0 0

u
(
u
(
α+ β

2

)
− 1
)

1− uα Kεu
(
1− α

2
u
)

0 0 1

+O
(
α2)

Then, a factorization X = exp (Ns)Y in the equation (136) leads to:(
d2

ds2
Y + exp (−Ns)H

(
H−1M −

(t (H−1M
)))

exp (Ns)
d

ds
Y + 2N

d

ds
Y

)
= 0

That is:

d2

ds2
Y +

 −2 (α+ β) 0 0
−sβ − 1 −2α (1− sα)Kε

0 0 0

 d

ds
Y = 0

which is solved as: (
d

ds
Y

)
= exp

(
N ′ (s)

)
A

for A an initial condition and

N ′ (s) =

 2s (α+ β) 0 0
1
2
s (sβ + 2) 2sα 1

2
Kεs (sα− 2)

0 0 0


One finds given our assumptions of first order approximation:

exp
(
N ′ (s)

)
=

 1 + 2s (α+ β) 0 0

s
(
2sα+ 3sβ

2
+ 1
)

1 + 2sα −Kεs
(
sα

2
+ 1
)

0 0 1


and the solutions of (136) are thus:

X (u) = exp (Nu)

(
B +

∫
exp

(
N ′u

)
A

)
= exp (Nu)(B + P (u)A)

where:

P (u) =

∫
exp

(
N ′u

)
=

 u (uα+ uβ + 1) 0 0
1
6
u2 (4uα+ 3uβ + 3) u (uα+ 1) − 1

6
Kεu2 (uα+ 3)

0 0 u


For a path where X (0) and X (s) are fixed, the constants A and B satisfy:

B = X (0) , A = (P (s))−1 (exp (−Ns)X (s)−X (0))

To find the correction (134) in terms of initial and final points, we define:

X̄ =
X (0) +X (s)

2
∆X = X (s)−X (0)
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and the solution of (136) rewrites:

X (u) = exp (Nu)
((

1− (P (u))(P (s))−1)X (0) + (P (u))(P (s))−1 exp (−Ns)X (s)
)

(137)

= exp (Nu)
((

1− (P (u)) (P (s))−1 (1− exp (−Ns))
)
X̄
)

+ exp (Nu)
(
(P (u))(P (s))−1 (exp (−Ns) + 1)− 1

) ∆X

2

= exp (Nu)(P (u))(P (s))−1 exp (−Ns) ∆X

+ exp (Nu)
(
1− (P (u))(P (s))−1 (1− exp (−Ns))

)
X (0)

Some computations yield intermediate results:

(P (u))(P (s))−1 =

 u 1−(s−u)(α+β)
s

0 0
1
6
u (s− u) 2sα−4uα−3uβ−3

s
u 1−(s−u)α

s
− 1

6
Kε

s
u (s− u)(2sα− uα− 3)

0 0 1
s
u



exp (Nu)(P (u))(P (s))−1 exp (−Ns) =

 u
s

0 0
− 1

6
u (s− u) sα+uα−3

s
u
s

1
6
uKε (s− u) sα+uα−3

s

0 0 u
s


exp (Nu)

(
1− (P (u))(P (s))−1 (1− exp (−Ns))

)
=

 1 0 0
− 1

2
uα (s− u) 1 1

2
Kεuα (s− u)

0 0 1



and one finds for X (u):

X (u) =

 u
s

0 0
− 1

6
u (s− u) sα+uα−3

s
u
s

1
6
uKε (s− u) sα+uα−3

s

0 0 u
s

∆X

+

 1 0 0
− 1

2
uα (s− u) 1 1

2
Kεuα (s− u)

0 0 1

X (0)

=

 u
s

0 0
− 1

6
u (s− u) sα+uα−3

s
u
s

1
6
uKε (s− u) sα+uα−3

s

0 0 u
s

X (s)

+

 s−u
s

0 0
− 1

6
u (s− u) 2sα−uα+3

s
s−u
s

1
6
Kεu (s− u) 2sα−uα+3

s

0 0 s−u
s

X (0)

so that the correction to the statistical weight can be found directly. One has:

γ

∫ s

0

X (u) du = γ

 1
2
s 0 0

1
12
s2 1

2
s − 1

12
Kεs2

0 0 1
2
s

∆X + γsX (0)

and ultimately:

γ 〈A2K1 +A1K2〉 =

∫ s

0

X (u) duMγ

∫ s

0

X (u) du

=
(tX (0)

) 0 0 0
0 0 s2

0 s2 0

X (0) +
(t∆X)

 0 0 1
24
s3

0 0 1
4
s2

1
24
s3 1

4
s2 − 1

12
Kεs3

∆X

+2
(t∆X)

 0 0 1
6
s3

0 0 1
2
s2

0 1
2
s2 − 1

6
Kεs3

X (0)

70



This term modifies the transition functions as:

Ḡ
(
C,K,A,C′,K′, A′, s

)
(138)

=

exp

(
− ((C−C̄)−(C′−C̄)(1−2(α+β)s))2

4$2s
−
((
K−K̄+ δK̄+C̄

α

)
−
((
K′−K̄+ δK̄+C̄

α

)
(1−2αs)−2(C′−C̄)s+2A′K̄εs

))2

4
(
ν2+ 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

− λ2(A−A′)2

4s

)

4

√
π$

2

λ2

(
ν2 + 2K̄2ε

λ2α2 + 3$2

2(2α+β)β

)
s

× exp (−γ 〈A2K1 +A1K2〉)

We can write more precisely this correction. To do so, let us first remark that a weight of the form:(t (∆X +MX (0))H−1 (∆X +MX (0))
)

+ γ
(t∆X)R1 (∆X) + 2γ

(t∆X)R2X (0) + γ
(tX (0)

)
R3X (0)

with:

R1 =

 0 0 1
24
s3

0 0 1
4
s2

1
24
s3 1

4
s2 − 1

12
Kεs3

 , R2 =

 0 0 1
6
s3

0 0 1
2
s2

0 1
2
s2 − 1

6
Kεs3

 , R3 =

 0 0 0
0 0 s2

0 s2 0


and the log of (??) be rewritten: (t (∆X + M̄X (0)

)(
H−1 + γA1

)(
∆X + M̄X (0)

))
(139)

+
(t (MX (0))

)(
H−1) (MX (0)) + γ

(tX (0)
)
A3X (0)

−
(t (M̄X (0)

))(
H−1 + γA1

)(
M̄X (0)

)
where M̄ satisfies: (

H−1 + γR1

)
M̄ = H−1M + γR2

that is:
M̄ = (1− γHR1)(M + γHR2)

In our case, it leads to:

M̄ =

 α+ β 0 1
6
as3γ

1 α− 1
8
bcs4γ2 1

2
bs2γ −Kε

− 1
4
cs2γ 1

2
cs2γ 1

4
Kεcs2γ − 1

6
Kεcs3γ


To complete the computation, we rewrite the two last terms in (139) as:(t (MX (0))

)(
H−1) (MX (0)) + γ

(tX (0)
)
R3X (0)−

(t (M̄X (0)
))(
H−1 + γR1

)(
M̄X (0)

)
=

(t (MX (0))
)(
H−1) (MX (0)) + γ

(tX (0)
)
R3X (0)

−
(tX (0)

)(tM + γ
(tR2

)
H
)(

1− γ
(tR1

)
H
) (
H−1M + γR2

)
X (0)

= γ
(tX (0)

)
R3X (0)−

(tX (0)
)(
γ
(tR2

)
M − γ

(tR1

)
M + γ

(tM)R2

)
X (0)

= γ
(tX (0)

)(
R3 −

((tM)(2R2 −R1)
))
X (0)

Defining H̄−1 by:

H̄−1 =
(
H−1 + γR1

)
=

 1
as

0 1
12
s3γ

0 1
bs

1
4
s2γ

1
12
s3γ 1

4
s2γ − 1

6
Kεcs4γ−6

cs


and:

H̄ =
(
H−1 + γR1

)−1
= H −HγR1H

=

 as 0 − 1
24
acs5γ

0 bs − 1
8
bcs4γ

0 − 1
8
bcs4γ cs+ 1

24
Kεc2s5γ


the weight including the correction (138) is:

exp
(
−
(t (∆X + M̄X (0)

)
H̄−1 (∆X + M̄X (0)

))
− γ

(tX (0)
)(
R3 −

((tM) (2R2 −R1)
))
X (0)

)
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This result can also be studied in terms of trajectories. Actually, in (138) a term is added to the initial action. It
has the form:

γ

2

(
t

(∫ s

0

(X (v)) dv

))
M

(∫ s

0

(X (u)) du

)
= γ

(
t

(∫ s

0

(X (v)) dv

))
M

(∫ v

0

(X (u)) du

)
and the correction to the dynamic equations due to the agents interaction is:

d2

ds2
X +H

((
H−1M −

(t (H−1M
)))) d

ds
X −

((
H
(tM)H−1M

))
X − γM

(∫ s

0

(X (u)) du

)
= 0 (140)

We can approximate M
(∫ v

0
(X (u)) du

)
with its mean path approximation, so that (140) rewrites:

d2

ds2
X +H

((
H−1M −

(t (H−1M
)))) d

ds
X −

((
H
(tM)H−1M

)
+ γHM1

)
X − γHM2X (0) = 0 (141)

with

M

(∫ v

0

(X (u)) du

)
= γ

 0 0 0
0 0 1
0 1 0

 1
2
s 0 0

1
12
s2 1

2
s − 1

12
Kεs2

0 0 1
2
s

∆X + sX (0)


= γ

 0 0 0
0 0 1

2
s

1
12
s2 1

2
s − 1

12
Kεs2

X (s) + γ

 0 0 0
0 0 1

2
s

− 1
12
s2 1

2
s 1

12
Kεs2

X (0)

≡ M1X (s) +M2X (0)

To find the solution of (142), we first consider:

d2

ds2
X +H

((
H−1M −

(t (H−1M
)))) d

ds
X −

((
H
(tM)H−1M

)
+ γHM1

)
X = 0 (142)

and proceed as for (136). We look for a solution of (142) of the form:

exp (Ns)
(

1 + γN̂ (s)
)

so that N̂ (s) satisfies:

d2

ds2
N̂ (s) + 2N

d

ds
N̂ (s) + exp (−Ns)H

(
H−1M −

(t (H−1M
)))

exp (Ns)
d

ds
N̂ (s)− exp (−Ns)HM1 exp (Ns) = 0

whose expanded form in our order of approximation is:

0 = γ
d2

ds2
N̂ (s) + γ

 0 0 0
−βs+ 1 0 −Kε −Kεsα

0 0 0

 d

ds
N̂ (s)

−γ

 0 0 0
5
12
Kεcs3 − 1

2
Kεcs2 1

2
bs

− 5
12
cs2 1

2
cs 5

12
Kεcs2


The solution N̂ (s) is computed at the zeroth order in α and as a consequence, it satisfies:

d2

ds2
N̂ (s) +

 0 0 0
−1 0 Kε

0 0 0

 d

ds
N̂ (s)−

 0 0 0
5
12
Kεcs3 − 1

2
Kεcs2 1

2
bs

− 5
12
cs2 1

2
cs 5

12
Kεcs2



N̂ (s) =

 0 0 0
1
36
Kεcs5 − 3

48
Kεcs4 − c

144
K2εs5 + 1

12
bs3

− 5
144

cs4 1
12
cs3 5

144
Kεcs4


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The equation (142) can then be solved in the following way. We first solve

d2

ds2
X +H

((
H−1M −

(t (H−1M
)))) d

ds
X −

((
H
(tM)H−1M + γHN1

)
+ γHM1

)
X = 0

as before by setting X = exp (Ns)
(

1 + γN̂ (s)
)
Y (s) and Y (s) satisfies:

d2

ds2
Y + L

d

ds
Y = 0

with:

L =
(

1− γN̂ (s)
)

exp (−Ns)
(
H
(
H−1M −

(t (H−1M
))))

exp (Ns)
(

1 + γN̂ (s)
)

+2
(

1− γN̂ (s)
)

exp (−Ns) d

ds

(
exp (Ns)

(
1 + γN̂ (s)

))
=

 0 0 0
7
72
Kεcs4γ − sβ + 1 − 1

12
Kεcs3γ −Kε −Kεsα− 7

72
K2εcs4γ

− 1
12
cs3γ 0 1

12
Kεcs3γ


+2

 −α− β 0 0
1
24
Kεcs4γ − 1 − 1

6
Kεcs3γ − α Kε + 1

4
bs2γ + 1

16
K2εcs4γ

1
144

cs5β2γ − 1
18
cs3γ 1

4
cs2γ 1

18
Kεcs3γ


=

 −2α− 2β 0 0
13
72
Kεcs4γ − sβ − 1 −2α− 5

12
Kεcs3γ Kε + 1

2
bs2γ −Kεsα+ 1

36
K2εcs4γ

1
72
cs5β2γ − 7

36
cs3γ 1

2
cs2γ 7

36
Kεcs3γ


∫
L (u) du =

∫ u

0

 −2α− 2β 0 0
13
72
Kεcs4γ − sβ − 1 −2α− 5

12
Kεcs3γ Kε + 1

2
bs2γ −Kεsα+ 1

36
K2εcs4γ

1
72
cs5β2γ − 7

36
cs3γ 1

2
cs2γ 7

36
Kεcs3γ

 ds

=

 −2u (α+ β) 0 0
13
360

Kεcu5γ − 1
2
u2β − u −2uα− 5

48
Kεcu4γ Kεu− 1

2
Kεu2α+ 1

6
bu3γ + 1

180
K2εcu5γ

1
432

cu6β2γ − 7
144

cu4γ 1
6
cu3γ 7

144
Kεcu4γ


As a consequence:

exp

(
−
∫
L (u) du

)

=

 1 0 0
0 1 0
0 0 1

−
 −2u (α+ β) 0 0

13Kεcu5γ
360

− 1
2
u2β − u −2uα− 5Kεcu4γ

48
Kεu− Kεu2α

2
+ bu3γ

6
+ K2εcu5γ

180
cu6β2γ

432
− 7cu4γ

144
1
6
cu3γ 7Kεcu4γ

144


+

1

2

 −2u (α+ β) 0 0
13
360

Kεcu5γ − 1
2
u2β − u −2uα− 5

48
Kεcu4γ Kεu− 1

2
Kεu2α+ 1

6
bu3γ + 1

180
K2εcu5γ

1
432

cu6β2γ − 7
144

cu4γ 1
6
cu3γ 7

144
Kεcu4γ

2

and then:

Y (u) = B +

(∫
exp

(
−
∫
L (u) du

))
A

= B +

 s (sα+ sβ + 1) 0 0
s2(480sα+360sβ−Kεcs4γ+360)

720
s+ s2α+ 3

80
Kεcs5γ −K

εs2

2
− Kεs3α

6
− bs4γ

24
− K2εcs6γ

180

− cs
5γ

144
− cs

4γ
24

s+ Kεcs5γ
144

A

which leads to the solution of (142):

X (u) = exp (Nu)
(

1 + γN̂ (u)
)(
B +

(∫
exp

(
−
∫
L (u) du

))
A

)
Given that:
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exp (Nu)
(

1 + γN̂ (u)
)

=

 1− s (β + α) 0 0

s
(
s
(
α+ β

2

)
− 1
)

1− sα Kεs
(
1− α

2
s
)

0 0 1


×

 1 0 0
0 1 0
0 0 1

+ γ

 0 0 0
1
36
Kεcs5 − 3

48
Kεcs4 − c

144
K2εs5 + 1

12
bs3

− 5
144

cs4 1
12
cs3 5

144
Kεcs4


=

 1− sβ − sα 0 0
s2α− s+ 1

2
s2β − 1

144
Kεcs5γ 1

48
Kεcs4γ − sα+ 1 Kεs− 1

2
Kεs2α+ 1

12
bs3γ + 1

36
K2εcs5γ

− 5
144

cs4γ 1
12
cs3γ 5

144
Kεcs4γ + 1



exp (Nu)
(

1 + γN̂ (u)
)(∫

exp

(
−
∫
L (u) du

))

=

 s 0 0
1
6
s3α− 1

2
s2 − 7

1440
Kεcs6γ s+ 1

60
Kεcs5γ 1

2
Kεs2 − 1

6
Kεs3α+ 1

24
bs4γ + 3

160
K2εcs6γ

0 1
24
cs4γ s


we have ultimately the general solution of (142):

X (u) = exp (Nu)
(

1 + γN̂ (u)
)(
B +

(∫
exp

(
−
∫
L (u) du

))
A

)

=

 1− sβ − sα 0 0
s2α− s+ 1

2
s2β − 1

144
Kεcs5γ 1

48
Kεcs4γ − sα+ 1 Kεs− 1

2
Kεs2α+ 1

12
bs3γ + 1

36
K2εcs5γ

− 5
144

cs4γ 1
12
cs3γ 5

144
Kεcs4γ + 1

B

+

 s 0 0
1
6
s3α− 1

2
s2 − 7

1440
Kεcs6γ s+ 1

60
Kεcs5γ 1

2
Kεs2 − 1

6
Kεs3α+ 1

24
bs4γ + 3

160
K2εcs6γ

0 1
24
cs4γ s

A

Then, adding the particular solution of (141):

d2

ds2
X +H

((
H−1M −

(t (H−1M
)))) d

ds
X −

((
H
(tM)H−1M

)
+ γHM1

)
X − γHM2X (0) = 0

which is:

X (s) = γ

 0 0 0
0 0 1

12
bs3

− 1
144

cs4 1
12
cs3 Kε

144
cs4

X (0)

we obtain the a full solution of (141):

X (s) =

 1− sβ − sα 0 0

s2α− s+ 1
2
s2β − Kεcs5γ

144
Kεcs4γ

48
− sα+ 1 Kεs− 1

2
Kεs2α+ 1

12
bs3γ + K2εcs5γ

36

− 5cs4γ
144

1
12
cs3γ 5

144
Kεcs4γ + 1

B (143)

+

 s 0 0
1
6
s3α− 1

2
s2 − 7Kεcs6γ

1440
s+ Kεcs5γ

60
Kεs2

2
− Kεs3α

6
+ bs4γ

24
+ 3K2εcs6γ

160

0 cs4γ
24

s

A

+γ

 0 0 0
0 0 1

12
bs3

− 1
144

cs4 1
12
cs3 Kε

144
cs4

X (0)

Several types of initial conditions are possible. The most relevant will be to chose X (0) and Ẋ (0) as initial
conditions, one finds A by writing:

A = Ẋ (0)−

 −α− β 0 0
−1 −α Kε

0 0 0

X (0)
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Inserting this result in (143) leads ultimately to:

X (s) =

 1 0 0
1
2
s2α+ 7

720
Kεcs5γ 1

48
Kεcs4γ + 1 1

6
bs3γ − 1

2
Kεs2α+ 1

90
K2εcs5γ

0 1
6
cγs3 1

X (0)

+

 s 0 0
1
6
s3α− 1

2
s2 − 7

1440
Kεcs6γ s+ 1

60
Kεcs5γ 1

2
Kεs2 − 1

6
Kεs3α+ 1

24
bs4γ + 3

160
K2εcs6γ

0 1
24
cs4γ s

 Ẋ (0)

Then, replacing b and c by their values, and γ by γ
Ā2Kε

, so that γ is dimensionless, and noting that X (0) = B, yields
the result stated in the text and the deviation to this trajectory due to the interaction term, with the same initial
conditions, is thus:

δX (s) = γ

 0 0 0
7

720
Kεcs5 1

48
Kεcs4 1

6
bs3 + 1

90
K2εcs5

0 1
6
cs3 0

X (0)

+γ

 0 0 0
− 7

1440
Kεcs6 1

60
Kεcs5 1

24
bs4 + 3

160
K2εcs6

0 1
24
cs4 0

 Ẋ (0)

Case 3: 2 Agents interaction via 4 points Green function

The field theoretic context allows also to study the impact of one type of agent on an other. Consider the transition
functions, for two agents, without interaction. The probability of transition between (K1, C1, A1)i and (K1, C1, A1)f
for the first one, and (K2, C2, A2)i and (K2, C2, A2)f for the second one, is:

G
(

(K1, C1, A1)i , (K2, C2, A2)i , (K1, C1, A1)f , (K2, C2, A2)f

)
≡ G

(
(K1, C1, A1)i , (K2, C2, A2)i , s

)
G
(

(K1, C1, A1)f , (K2, C2, A2)f , s
)

An application of the Wick theorem to the field interaction term:

γ

2

∫
Ψ† (K1, C1, A1) Ψ† (K2, C2, A2) {A2K1 +A1K2}Ψ (K1, C1, A1) Ψ (K2, C2, A2)

leads directly to a correction, on Green function Laplace transform:∫
γG
(
(K1, C1, A1)i , (K1, C1, A1) ,mi

)
G
(

(K1, C1, A1) , (K1, C1, A1)f ,mi

)
×{A2K1 +A1K2}

×G
(
(K2, C2, A2)i , (K2, C2, A2) ,mi

)
G
(

(K2, C2, A2) , (K2, C2, A2)f ,mi

)
≡

∫
γG
(
(X1)i , X1,mi

)
G
(
X1, (X1)f ,mi

){(tX1

)
MX2

}
G
(
(X2)i , X2,mi

)
G
(
X2, (X2)f ,mi

)
and in time representation:

γ

∫
G
(
(X1)i , X1 (s1) , s1

)
G
(
X1 (s1) , (X1)f , s− s1

)
×
{(tX1 (s1)

)
MX2 (s2)

}
G
(
(X2)i , X2 (s2) , s2

)
G
(
X2 (s2) , (X2)f , s− s2

)
ds1ds2

= γ

∫ 〈(tX1 (s1)
)
MX2 (s2)

〉
ds1ds2

where the expectation is taken for path X1 (s1) starting from (K1, C1, A1)i and ending at (K1, C1, A1)f and path
X2 (s2) starting from (K2, C2, A2)i and ending at (K2, C2, A2)f . Given our assumptions about the parameters, we can,
as in the previous paragraph, approximate these paths by their average values to the zeroth order in the parameters:

Xi (u) =

 u
s

0 0
u
2s

(s− u) u
s
− u

2s
Kε (s− u)

0 0 u
s

Xi (s) +

 s−u
s

0 0
− 1

2
u
s

(s− u) s−u
s

Kε u
2s

(s− u)
0 0 s−u

s

Xi (0)
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so that: ∫ s

0

Xi (u) du =

 1
2
s 0 0

1
12
s2 1

2
s − 1

12
Kεs2

0 0 1
2
s

Xi (s) +

 1
2
s 0 0

− 1
12
s2 1

2
s 1

12
Kεs2

0 0 1
2
s

Xi (0)

=

 1
2
s 0 0

1
12
s2 1

2
s − 1

12
Kεs2

0 0 1
2
s

∆Xi + sXi (0)

=

 0 0 0
1
6
s2 0 − 1

6
Kεs2

0 0 0

 ∆Xi
2

+ sX̄i

with X̄i = Xi(0)+Xi(s)
2

.

γ

∫ 〈(tX1 (s1)
)
MX2 (s2)

〉
ds1ds2

= γ
(t∆X2

) 0 0 1
24
s3

0 0 1
4
s2

1
24
s3 1

4
s2 − 1

12
Kεs3

∆X1 + γ
(tX2 (0)

) 0 0 0
0 0 s2

0 s2 0

X1 (0)

+γ
(t∆X2

) 0 0 1
12
s3

0 0 1
2
s2

0 1
2
s2 − 1

12
Kεs3

X1 (0) + γ
(tX2 (0)

) 0 0 0
0 0 1

2
s2

1
12
s3 1

2
s2 − 1

12
Kεs3

∆X1

= γ
(tX̄2

) 0 0 0
0 0 s2

0 s2 0

 X̄1 +
γ
(
t∆X2

)
2

 0 0 1
6
s3

0 0 0
0 0 − 1

6
Kεs3

 X̄1

+γ
(tX̄2

) 0 0 0
0 0 0

1
6
s3 0 − 1

6
Kεs3

 ∆X1

2

This term modifies the 4 points Green function to an interaction Green function Gγ :

Gγ
(

(K1, C1, A1)i , (K2, C2, A2)i , (K1, C1, A1)f , (K2, C2, A2)f

)
≡ G

(
(K1, C1, A1)i , (K2, C2, A2)i , (K1, C1, A1)f , (K2, C2, A2)f

)
exp

(
−γ
∫ 〈(tX1 (s1)

)
MX2 (s2)

〉
ds1ds2

)
In terms of trajectory, this means that the deviation of X1 (s) due to X2 (s2) is given by γ

∫ s
0
MX2 (s2) ds2 (and the

deviation for X2 (s) is γH
∫ s

0
MX1 (s1) ds1). Given (144), one has:

γHM

∫ s

0

X2 (u) du = γ

 0 0 0
0 0 0

1
6
cs3 0 − 1

6
cKεs3

 ∆X2

2
+ γ

 0 0 0
0 0 bs
0 cs 0

 X̄2
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